
Monotasks: Architecting for Performance Clarity in Data

Analytics Frameworks

Kay Ousterhout
UC Berkeley

Christopher Canel⇤
Carnegie Mellon University

Sylvia Ratnasamy
UC Berkeley

Scott Shenker
UC Berkeley, ICSI

ABSTRACT
In today’s data analytics frameworks, many users struggle
to reason about the performance of their workloads. With-
out an understanding of what factors are most important to
performance, users can’t determine what configuration pa-
rameters to set and what hardware to use to optimize runtime.
This paper explores a system architecture designed to make
it easy for users to reason about performance bottlenecks.
Rather than breaking jobs into tasks that pipeline many re-
sources, as in today’s frameworks, we propose breaking jobs
into monotasks: units of work that each use a single resource.
We demonstrate that explicitly separating the use of different
resources simplifies reasoning about performance without
sacrificing performance. Monotasks provide job completion
times within 9% of Apache Spark for typical scenarios, and
lead to a model for job completion time that predicts run-
time under different hardware and software configurations
with at most 28% error. Furthermore, separating the use of
different resources allows for new optimizations to improve
performance.

ACM Reference Format:
Kay Ousterhout, Christopher Canel, Sylvia Ratnasamy, and Scott
Shenker. 2017. Monotasks: Architecting for Performance Clarity in
Data Analytics Frameworks. In Proceedings of SOSP ’17, Shanghai,
China, October 28, 2017, 17 pages.
https://doi.org/10.1145/3132747.3132766

⇤Work done while at UC Berkeley

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed to
Association for Computing Machinery.
ACM ISBN 978-1-4503-5085-3/17/10. . . $15.00
https://doi.org/10.1145/3132747.3132766

1 INTRODUCTION
Users often spend significant energy trying to understand
systems so that they can tune them for better performance.
Performance questions that a user might ask include:

What hardware should I run on? Is it worth it to get
enough memory to cache on-disk data? How much will up-
grading the network from 1Gbps to 10Gbps improve perfor-
mance?

What software configuration should I use? Should I
store compressed or uncompressed data? How much work
should be assigned concurrently to each machine?

Why did my workload run so slowly? Is hardware degra-
dation leading to poor performance? Is performance affected
by contention from other users?

Effectively answering the above questions can lead to sig-
nificant performance improvements; for example, Venkatara-
man et al. demonstrated that selecting an appropriate cloud
instance type could improve performance by 1.9⇥ without
increasing cost [32]. Yet answering these questions in exist-
ing systems remains difficult. Moreover, expending signifi-
cant effort to answer these questions once is not sufficient:
users must continuously re-evaluate as software optimiza-
tions, hardware improvements, and workload changes shift
the bottleneck.

Existing approaches have added performance visibility as
an afterthought, e.g., by adding instrumentation to existing
systems [4, 7, 11, 25]. We argue that architecting for perfor-
mance clarity – making it easy to understand where bottle-
necks lie and the performance implications of various system
changes – should be an integral part of system design. Sys-
tems that simplify reasoning about performance enable users
to determine what configuration parameters to set and what
hardware to use to optimize runtime.

To provide performance clarity, we propose building sys-
tems in which the basic unit of scheduling consumes only one
resource. In the remainder of this paper, we apply this princi-
ple to large-scale data analytics frameworks. We present an
architecture that decomposes data analytics jobs into mono-
tasks that each use exactly one of CPU, disk, or network.
Each resource has a dedicated scheduler that schedules the

https://doi.org/10.1145/3132747.3132766
https://doi.org/10.1145/3132747.3132766

SOSP ’17, October 28, 2017, Shanghai, China K. Ousterhout et al.

spark.textFile(“hdfs://…”).flatMap(lambda l: l.split(“ “)).map(lambda w: (w, 1)).reduceByKey(lambda a, b: a + b).saveAsTextFile(“hdfs://…”)

Map stage Reduce stage

Reduce Task

Network: read remote shuffle data

CPU: deserialize data, combine
counts, serialize result
Disk: read local shuffle data;
write result

Map Task

Disk: read input
from HDFS; write
shuffle data

CPU: deserialize input,
perform flatMap and map,
serialize shuffle output

Key:

Task:

CPU use:

Disk use:

Network use:

Figure 1: Execution of a Spark job, written using Spark’s Python API, that performs word count. The job is broken into
two stages, and each stage is broken into parallel tasks (shown as white boxes that execute in four parallel slots) that
each pipeline use of different resources.

monotasks for that resource. This design contrasts with to-
day’s frameworks, which distribute work over machines by
dividing it into tasks that each parallelize the use of CPU,
disk, and network.

Decoupling the use of different resources into monotasks
simplifies reasoning about performance. With current frame-
works, the use of fine-grained pipelining to parallelize CPU,
disk, and network results in ad-hoc resource use that can
change at fine time granularity. This makes it difficult to rea-
son about a job’s bottleneck, because even a single task’s
resource bottleneck can change on short time horizons. Fur-
thermore, tasks may contend at the granularity of the pipelin-
ing; e.g., when one task’s disk read blocks waiting for a disk
write triggered by a different task. This contention is handled
by the operating system, making it difficult for the framework
to report how different factors contributed to task runtime.
In contrast, each monotask consumes a single resource fully,
without blocking on other resources, making it trivial to rea-
son about the resource use of a monotask and, as a result,
the resource use of the job as a whole. Controlling each re-
source with a dedicated scheduler allows that scheduler to
fully utilize the resource and queue monotasks to control
contention.

We used monotasks to implement MonoSpark, an API-
compatible version of Apache Spark that replaces current
multi-resource tasks with monotasks. MonoSpark does not
sacrifice performance, despite eliminating fine-grained re-
source pipelining: on three benchmark workloads, MonoSpark
provides job completion times within 9% of Spark for typical
scenarios (§5). In some cases, MonoSpark outperforms Spark,
because per-resource schedulers allow MonoSpark to avoid
resource contention and under utilization that occur as a result
of the non-uniform resource use during the lifespan of Spark
tasks.

Using monotasks to schedule resources leads to a sim-
ple model for job completion time based on the runtimes
of each type of monotask. We use the model to predict the
runtime of MonoSpark workloads under different hardware

configurations (e.g., with a different number or type of disk
drives), different software configurations (with data stored
de-serialized and in-memory, rather than on-disk), and with
a combination of both hardware and software changes (§6).
For most “what-if” questions, the monotasks model provides
estimates within 28% of the actual job completion time; for
example, monotasks correctly predicts the 10⇥ reduction in
runtime from migrating a workload to a 4⇥ larger cluster with
SSDs instead of HDDs.

Using monotasks also makes bottleneck analysis trivial.
Monotask runtimes can easily be used to determine the bottle-
neck resource, and we demonstrate that the monotasks model
can be used to replicate the findings of a recent research
paper [25] that used extensive instrumentation to perform
bottleneck analysis in Spark (§6.5).

Finally, using monotasks leads to new opportunities for
performance optimizations. For example, MonoSpark can au-
tomatically determine the ideal task concurrency, which users
are required to specify in existing frameworks. We illustrate
one example where using monotasks to automatically deter-
mine the ideal concurrency improves job completion time by
30% relative to configuring a job’s resource use.

2 BACKGROUND
2.1 Architecture of data analytics

frameworks
This paper focuses on the design of data analytics frame-
works like MapReduce [12], Dryad [18], and Spark [36]
that provide an API for performing computations across
large, distributed datasets. These frameworks rely on a bulk-
synchronous-parallel model where jobs are broken into stages,
and each stage is broken into parallel tasks that execute in-
dependently and may read shuffled data from earlier stages.
Figure 1 shows an example job, expressed using Spark’s
Python API, and illustrates how the job would be broken into
parallel tasks in two stages. Each task in a stage performs
the same computation, but on a different block of input data.

Monotasks: Architecting for Performance Clarity SOSP ’17, October 28, 2017, Shanghai, China

��
����
����
����
����
��

���� ���� ���� ���� ���� ���� ����

�
���
��
��
��
�

��������

�����

��� ������ ������

Figure 2: As a result of fine-grained pipelining, resource
utilization during Spark jobs is non-uniform. This exam-
ple illustrates the utilization during a 30 second period
when 8 tasks were running concurrently, and when the
bottleneck changes between CPU and disk.

These frameworks are widely used because they allow users
to express computation using a simple API, and the frame-
work abstracts away the details of breaking the computation
into stages and tasks that can be run in parallel.

These frameworks use fine-grained pipelining to parallelize
use of CPU, network, and disk within each task, as shown in
Figure 1. In Spark, each task has a single thread that processes
one record at a time: the map task, for example, reads one
record from disk, computes on that record, and writes it back
to disk. Pipelining is implemented in the background; for
example, disk writes typically are written to buffer cache, and
the operating system writes to disk asynchronously. Pipelining
is not expressed by users as part of the API. For example, in
the map stage in Figure 1, the user specifies the name of the
input file and the transformation to apply to each line of input
data, and the framework controls how the file contents are
read from disk and passed to the user-specified computation.
Frameworks implement pipelining to make tasks complete
more quickly by parallelizing resource use.

2.2 The challenge of reasoning about
performance

The fine-grained pipelining orchestrated by each task makes
reasoning about performance difficult for three reasons:

Tasks have non-uniform resource use. A task’s resource
profile may change at fine time granularity as different parts
of the pipeline become a bottleneck. For example, the reduce
task in Figure 1 bottlenecks on CPU, network, and disk at
different points during its execution. Figure 2 illustrates this
effect during a thirty-second period of time when 8 concurrent
Spark tasks were running on a machine. During this period,
the resource utilization oscillates between being bottlenecked
on CPU and being bottlenecked on one of the disks, as a result
of fine-grained changes in each task’s resource usage.

Concurrent tasks on a machine may contend. Each use
of network, CPU, or disk may contend with other tasks run-
ning on the same machine. For example, when multiple tasks
simultaneously issue disk reads or writes for the same disk,
those requests will contend and take longer to complete. This

occurs in Figure 2 at 920 seconds, when all eight concurrent
tasks block waiting on requests from the two disks.

Resource use occurs outside the control of the analytics
framework. Resource use is often triggered by the operating
system. For example, data written to disk is typically writ-
ten to the buffer cache. The operating system, and not the
framework, will eventually flush the cache, and this write
may contend with later disk reads or writes.

Together, these three challenges make reasoning about per-
formance difficult. Consider a user who asks a question like
“how much more quickly would my job have run if it used
twice as many disks”. To answer this question, she would
need to walk through a task’s execution at the level of detail
of the pipelining shown in the example tasks in Figure 1. For
each fine-grained use of network, CPU, and disk, the user
would need to determine whether the time for that resource
use would change in the new scenario, factoring in how tim-
ing would be affected by the resource use of other tasks on
the same machine – which would each need to be modeled at
similarly fine time granularity. The complexity of this process
explains the lack of simple models for job completion time.

Existing approaches to reasoning about performance have
addressed this challenge in two different ways. One approach
has focused on adding instrumentation to measure when tasks
block on different resources; this instrumentation can be used
to answer simple questions about resource bottlenecks, but
cannot be used for more sophisticated what-if questions [25].
A second approach treats the analytics framework as a black
box, and uses machine learning techniques to build a new per-
formance model for each workload by running the workload
(or a representative subset of the workload) repeatedly under
different configurations (e.g., Ernest [32] and CherryPick [5]).
These models can answer what-if questions, but require of-
fline training for each new workload. The complexity of these
approaches is mandated by the challenges of reasoning about
performance in current frameworks.

Given the importance of the ability to reason about per-
formance and the challenges to doing so today, this paper
explores architectural approaches to providing performance
clarity. We ask: would a different system architecture make it
easy to reason about performance? And would such an archi-
tecture require a simplistic approach that sacrifices fast job
completion times?

3 MONOTASKS ARCHITECTURE
This paper explores a system architecture that provides perfor-
mance clarity by using single-resource units of work called
monotasks. Our focus in this paper is to explore how systems
can provide performance clarity, and as a result we do not
focus on optimizing our implementation to maximize per-
formance. Using monotasks enables many new scheduling

SOSP ’17, October 28, 2017, Shanghai, China K. Ousterhout et al.

time

4 tasks run
concurrently

on one
worker

Network read
CPU

Disk write

Pipelined task
(multitask)

(a) Execution as today’s multi-resource tasks.

Monotasks for the first multitask

time

Network monotasks
CPU scheduler runs

one monotask per core

HDD scheduler runs
one monotask per disk

(b) Execution as monotasks. Arrows represent dependencies.

Figure 3: Execution of eight multitasks on a single worker machine. With current frameworks, shown in (a), each
multitask parallelizes reading data over the network, filtering some of the data (using the CPU), and writing the result
to disk. Using monotasks, shown in (b), each of today’s multitasks is decomposed into a DAG of monotasks, each of
which uses exactly one resource. Per-resource schedulers regulate access to each resource.

optimizations, and we leave exploration of such optimizations
to future work.

3.1 Design
The monotasks design replaces the fine-grained pipelining
used in today’s tasks – henceforth referred to as multitasks –
with statistical multiplexing across monotasks that each use a
single resource. The design is based on four principles:

Each monotask uses one resource. Jobs are decomposed
into units of work called monotasks that each use exactly one
of CPU, network, and disk. As a result, the resource use of
each task is uniform and predictable.

Monotasks execute in isolation. To ensure that each mono-
task can fully utilize the underlying resource, monotasks do
not interact with or block on other monotasks during their
execution.

Per-resource schedulers control contention. Each worker
machine has a set of schedulers that are each responsible for
scheduling monotasks on one resource. These resource sched-
ulers are designed to run the minimum number of monotasks
necessary to keep the underlying resource fully utilized, and
queue remaining monotasks. For example, the CPU scheduler
runs one monotask per CPU core. This design makes resource
contention “visible” as the queue length for each resource.

Per-resource schedulers have complete control over each
resource. To ensure that the per-resource schedulers can con-
trol contention for each resource, monotasks avoid optimiza-
tions that involve the operating system triggering resource
use. For example, disk monotasks flush all writes to disk, to
avoid situations where the OS buffer cache contends with
other disk monotasks.

Figure 3 compares execution of multitasks on a single
worker machine with current frameworks, shown in (a), with
how those multitasks would be decomposed into monotasks
and executed by per-resource schedulers, shown in (b).

The principles above represent the core ideas underlying
monotasks. A variety of architectures could support these
principles; for example, there are many approaches to sched-
uling monotasks. The remainder of this section focuses on the

design decisions that we made to support monotasks specifi-
cally in the context of Apache Spark; we refer to the resulting
system as MonoSpark.

3.2 How are multitasks decomposed into
monotasks?

Decomposing jobs into monotasks does not require users to
write their jobs as a sequence of monotasks, and can be done
internally by the framework without changing the existing
API. This is possible for frameworks such as Spark because
they provide a high-level API: users describe the location
of input data, the computation to perform on the data, and
where to store output data, and Spark is responsible for im-
plementing the necessary disk and network I/O. Because the
framework is responsible for the details of how I/O occurs, it
can replace the existing fine-grained pipelining with mono-
tasks without requiring changes to user code.

With MonoSpark, the decomposition of jobs into mono-
tasks is performed on worker machines rather than by the
central job scheduler. The job scheduler works in the same
way as in today’s frameworks: it decomposes jobs into par-
allel multitasks that perform a computation on a single input
data block, and that run on one machine. These multitasks
are the same as tasks in current frameworks, and as in current
frameworks, they are assigned to workers based on data local-
ity: if a multitask reads input data that is stored on disk, it will
be assigned to a worker machine that holds the input data.

Multitasks are decomposed into monotasks when they ar-
rive on the worker machine. Figure 4 illustrates how jobs are
decomposed into monotasks using the word count job from
Figure 1 as an example. To read input data from HDFS, the
job uses the textFile function, and passes in the name of a
file in HDFS. With both Spark and MonoSpark, the job sched-
uler creates one multitask for each block of the file (HDFS
breaks files into blocks, and distributes the blocks over a
cluster of machines). Spark implements fine-grained pipelin-
ing to read and compute on the block: each Spark multitask
pipelines reading the file block’s data from disk with com-
putation on the data. MonoSpark instead creates a disk read

Monotasks: Architecting for Performance Clarity SOSP ’17, October 28, 2017, Shanghai, China

spark.textFile(“hdfs://…”).flatMap(lambda l: l.split(“ “)).map(lambda w: (w, 1)).reduceByKey(lambda a, b: a + b).saveAsTextFile(“hdfs://…”)

Deserialize input,
perform flatMap and map,

serialize shuffle output

Write shuffle
data to local

disk

Read input
as bytes

from HDFS

Map multitask
(one pipelined map task in Spark)

…

Request
remote

shuffle data
Read shuffle data

from disk
Send shuffle

data

Read shuffle data
from local disk

Deserialize
shuffle data,

combine counts,
serialize result

Write result
(as bytes) to

HDFS

Reduce multitask
(one pipelined reduce task

in Spark)

Key:

Compute monotask:

Disk monotask:

Network monotask:

Dependency:

Map stage

Reduce stage

Executed on remote machines

Figure 4: Decomposition of a Spark job that performs word count (written using Spark’s Python API) into monotasks.
The grey boxes show the two stages that the job would be broken into, and the white box within each stage illustrates
how one multitask in the stage is decomposed into monotasks. For brevity the figure omits a compute monotask at the
beginning of each multitask, which deserializes the task received from the scheduler and creates the DAG of monotasks,
and a compute monotask at the end of each multitask, which serializes metrics about the task’s execution.

monotask, which reads all of the file block’s bytes from disk
into a serialized, in-memory buffer, followed by a compute
monotask, which deserializes the bytes, emits a count of 1 for
each instance of each word, and serializes the resulting data
into a new in-memory buffer. The shuffle is similarly specified
using a high-level API: the function reduceByKey is used
to aggregate all of the counts for each word, which is done
using a shuffle. Spark uses pipelining to parallelize reading
shuffle data from disk and over the network with deserial-
izing the data and performing the computation specified in
the reduceByKey call. MonoSpark implements the shuffle
by breaking each reduce multitask into network monotasks
that each issue a request for shuffle data to remote machines.
When remote machines receive the request, they create a
disk read monotask to read all of the requested shuffle data
into memory, followed by a network monotask to send the
data back to the machine where the reduce multitask is ex-
ecuting. Once all shuffle data has been received and placed
in in-memory buffers, a compute monotask deserializes all
of the shuffle data and performs the necessary computation.
Other functions in Spark’s API are implemented in a similar
manner: Spark’s API accepts a high-level description of the
computation and the data to operate on, but not details of how
resources are used, so MonoSpark can transparently change
fine-grained pipelining to monotasks.

Because using monotasks eliminates the use of fine-grained
pipelining to parallelize resource use, a single multitask will
take longer to complete with monotasks than with today’s
frameworks. For example, for the map task in Figure 4, using
monotasks serializes the resource use, causing the multitask
to take longer than when resource use is parallelized using
fine-grained pipelining (as in Figure 1). In order to avoid
increasing job completion time, jobs must be broken down

into enough multitasks to enable pipelining between indepen-
dent monotasks in the same job. In other words, the mono-
tasks design forgoes fine-grained pipelining within a single
multitask and instead achieves high utilization through the
statistical multiplexing of monotasks. We evaluate the sensi-
tivity of MonoSpark’s performance to the number of tasks in
a job in §5.3, and discuss the resulting limitations on when
MonoSpark can be used effectively in §8.

3.3 Scheduling monotasks on each worker
On each worker, monotasks are scheduled using two lay-
ers of schedulers. A top level scheduler, called the Local
DAG Scheduler, manages the directed acyclic graph (DAG)
of monotasks for each multitask. The Local DAG Sched-
uler tracks the dependencies for each monotask, and submits
monotasks to the appropriate per-resource scheduler when
all dependencies have completed. For example, for the map
multitask in Figure 4, the Local DAG Scheduler will wait
to submit the compute monotask to the compute scheduler
until the disk read monotask has completed. The Local DAG
Scheduler is necessary to ensure that monotasks can fully
utilize the underlying resource and do not block on other
monotasks during their execution.

The Local DAG Scheduler assigns monotasks to dedicated,
per-resource schedulers that each seek to fully utilize the
underlying resource while minimizing contention:

CPU scheduler The CPU scheduler is straightforward: one
monotask can fully utilize one core, so the CPU scheduler
runs one monotask per core and queues remaining monotasks.

Disk scheduler The hard disk scheduler runs one mono-
task per disk, because running multiple concurrent monotasks

SOSP ’17, October 28, 2017, Shanghai, China K. Ousterhout et al.

reduces throughput due to seek time.1 Flash drives, on the
other hand, can provide higher throughput when multiple
operations are outstanding. The flash scheduler exposes a
configuration parameter that allows users to change the num-
ber of concurrent flash monotasks based on the underlying
hardware. For the flash drives we used, we found that using
four outstanding monotasks achieved nearly the maximum
throughput (results omitted for brevity).

Network scheduler Efficiently scheduling the network is
the most challenging, because scheduling network monotasks
requires coordination across machines. If a machine A starts
sending data to machine B, the transfer may contend with
other flows originating at A, or other flows destined to B.
Determining how to match sender demand and receiver band-
width to optimize utilization is an NP-hard problem that has
been studied extensively. MonoSpark adopts a simple ap-
proach where all scheduling occurs at the receiver, which
limits its outstanding requests. We chose the number of out-
standing requests to balance two objectives. Consider a ma-
chine running multiple reduce multitasks that are each fetch-
ing shuffle data from all machines where map multitasks were
executed. Issuing the requests for just one multitask at a time
hurts utilization: the multitask could be waiting on data from
just one (slow) remote machine, causing the receiving link
to be underutilized. On the other hand, issuing the requests
for too many multitasks at a time also hurts performance. Be-
cause the monotasks design relies on coarse-grained pipelin-
ing between monotasks for different multitasks, jobs com-
plete most quickly when all of the data for one multitask is
received before using any of the receiver bandwidth for the
next multitask’s data. This way the compute monotask (to
process received data) can be pipelined with the next multi-
task’s network requests. To balance these two issues, we limit
the number of outstanding requests to those coming from four
multitasks, based on an experimental parameter sweep. As in
other parts of the monotasks design, more sophisticated sched-
ulers (e.g., based on distributed matching between senders
and receivers, as in pHost [13] and iSlip [20]) are possible,
and we leave exploration of these to future work.

Queueing monotasks When more monotasks are waiting
for a resource than can run concurrently, monotasks will be
queued. The queuing algorithm is important to maintaining
high resource utilization when multitasks include multiple
monotasks that use the same resource. Consider multitasks
that are made up of three monotasks: a disk read monotask,
a compute monotask, and a disk write monotask. If a queue
of disk write monotasks accumulates (e.g., when disk is the
bottleneck), as writes finish and new multitasks are assigned
1When disk monotasks transfer a small amount of data, disk throughput can
be improved by running many parallel monotasks, so the disk scheduler can
optimize seek time by re-ordering monotasks. We leave exploration of this to
future work.

to the machine, the read monotasks for the new multitasks
will be stuck in the long disk queue behind all of the writes.
Because each compute monotask depends on a read monotask
completing first, the CPU will remain idle until all of the
disk writes have finished. After a burst of CPU use, the disk
queue will again build up with the disk writes, and future
CPU use will be delayed until all of the writes complete. This
cycle will continue and harms utilization because it prevents
CPU and disk from being used concurrently. Intuitively, to
maintain high utilization, the system needs to maintain a
pipeline of monotasks to execute on all resources. To solve
this problem, queues implement round robin over monotasks
in different phases of the multitask DAG. For example, in the
example above, the disk scheduler would implement round
robin between disk read and disk write monotasks.

3.4 How many multitasks should be assigned
concurrently to each machine?

The MonoSpark job scheduler works in the same way as the
Spark job scheduler, with one exception: with MonoSpark,
more multitasks need to be concurrently assigned to each
machine to fully utilize the machine’s resources. Consider
Figure 3 as an example: with current frameworks, four tasks
run concurrently (one on each core), whereas when jobs are
decomposed into monotasks, four multitasks can concurrently
be running CPU monotasks, while additional multitasks can
use the disk and the network.

Before discussing how many multitasks to assign to each
machine in MonoSpark, we note that the trade-offs in making
this decision are different than in current frameworks. In cur-
rent frameworks, the number of tasks concurrently assigned
to each machine is intimately tied to resource use: schedulers
must navigate a trade-off between assigning more tasks to
each machine, to drive up utilization, and assigning fewer
tasks, to avoid contention. With the per-resource monotask
schedulers, on the other hand, each resource scheduler avoids
contention by queuing monotasks beyond the number that can
run efficiently on each resource. As a result, the job sched-
uler does not need to limit the number of outstanding tasks
to avoid contention, and the primary risk is under-utilizing
resources by assigning too few tasks per machine.

To ensure that all resources can be fully utilized, MonoSpark
assigns enough multitasks that all resources can have the max-
imum allowed number of concurrent monotasks running, plus
one additional monotask. For example, if a machine has four
CPU cores and one hard disk, the job scheduler will assign
ten concurrent multitasks: enough for four to have compute
monotasks running, one to have a disk monotask running,
four have monotasks running on the network, and one extra.
The extra multitask exists for the purposes of the round-robin
scheduling described in §3.3: without this extra monotask,

Monotasks: Architecting for Performance Clarity SOSP ’17, October 28, 2017, Shanghai, China

one of the queues in the round-robin ordering can get skipped,
because it is temporarily empty while a new multitask is being
requested from the job scheduler.

The strategy emphasizes simplicity, and a more sophis-
ticated scheduling strategy that accounted for the types of
monotasks that make up each multitask and the current re-
source queue lengths on each worker machine would likely
improve performance. The goal of this paper is to explore the
performance of a relatively simple and unoptimized mono-
tasks design, so we leave exploration of more complicated
scheduling techniques to future work.

3.5 How is memory access regulated?
Breaking jobs into monotasks means that more memory is
used on each worker: in Figure 4, for example, all of the
map multitask’s data is read into memory before computa-
tion begins, whereas with current frameworks, fine-grained
pipelining means that the data would be incrementally read,
computed on, and written back to disk. This can result in ad-
ditional garbage collection, which slows job completion time.
This can also cause workers to run out of memory. Monotasks
schedulers could prioritize monotasks based on the amount of
remaining memory; e.g., the disk scheduler could prioritize
disk write monotasks over read monotasks when memory is
contended, to clear data out of memory. This paper does not
explore strategies to regulate memory use; we discuss this
limitation in more detail in §8.

4 IMPLEMENTATION
The previous section described the design of MonoSpark; this
section describes lower-level implementation details. MonoSpark
uses monotasks to replace the task execution code in Apache
Spark [1, 36].2 MonoSpark is compatible with Spark’s public
API: if a developer has written an application on top of Spark,
she can change to using MonoSpark simply by changing her
build file to refer to MonoSpark rather than Spark. MonoSpark
inherits most of the Spark code base, and the application code
running on Spark and MonoSpark is identical. For example,
for a job that filters a dataset from disk and saves the result,
Spark and Monotasks both read the same input data from the
same place on disk, use the same code to deserialize the input
data, run exactly the same Scala code to perform the filter,
use the same code to serialize the output, and write identical
output to disk. MonoSpark only changes the code that handles
pipelining resources used by a task.

HDFS integration As part of integrating with Spark, our
implementation also integrates with Hadoop Distributed File
System (HDFS) [6], which is commonly used to store data
that is analyzed with Spark. Spark uses a pipelined version of

2The MonoSpark code and scripts to run the experiments in the evaluation
are available at https://github.com/NetSys/spark-monotasks.

the HDFS API, where Spark reads one deserialized record at
a time, and HDFS handles pipelining reading data from disk
with decompressing and deserializing the data (writes work in
a similar manner). In order to separate the disk and compute
monotasks, we re-wrote the HDFS integration to decouple
disk accesses from (de)serialization and (de)compression. We
did this using existing HDFS APIs, so we did not need to
modify HDFS.

Resource schedulers All of the per-resource schedulers
are written at the application level and not within the op-
erating system, meaning that resource use is not perfectly
controlled. For example, we run one CPU monotask for each
CPU core, but we do not pin these tasks to each core, and
tasks may be interrupted by other monotasks that need small
amounts of CPU (e.g., to initiate a disk read). We find that
MonoSpark enables reasoning about performance in spite of
these imperfections.

5 MONOTASKS PERFORMANCE
In this section, we compare performance of MonoSpark to
Spark. We find that changing fine-grained pipelining to coarse-
grained, single-resource monotasks does not sacrifice perfor-
mance: MonoSpark provides job completion times within 9%
of Apache Spark for typical scenarios.

5.1 Experimental setup
We ran all of our experiments on clusters of Amazon EC2
instances that have 8 vCPUs, approximately 60GB of mem-
ory, and two disks. Some experiments use m2.4xlarge in-
stances with two hard disk drives (HDDs), while others uses
i2.2xlarge instances with one or two solid state drives (SSDs),
in order to illustrate that monotasks works with both types
of disks. Our experiments compare Spark version 1.3 and
MonoSpark, which is based on Spark 1.3. We ran at least
three trials of each experiment, in addition to a warmup trial
(to warmup the JVM) that was discarded, and except where
otherwise noted, all plots show the median with error bars for
the minimum and maximum values.

The version of Spark we compared against is known to
have various CPU inefficiencies, and recent efforts have pro-
duced significant improvements in runtime, both in newer
versions of Spark [33], and in alternative systems [10, 21]. As
described in §4, we changed only the parts of Spark related
to resource pipelining, so MonoSpark inherits Spark’s CPU
inefficiencies. MonoSpark would similarly inherit recent op-
timizations, which are orthogonal to the use of monotasks.
For example, efforts to reduce serialization time would re-
duce the runtime for the compute monotasks that perform
(de)serialization in MonoSpark. We also designed our work-
loads to avoid any single bottleneck resource, as we elaborate

https://github.com/NetSys/spark-monotasks.

SOSP ’17, October 28, 2017, Shanghai, China K. Ousterhout et al.

�

���

���

���

���

���

���

���

�� �� �� �� �� �� �� �� �� �

��
��
��
�
��
�

�����

�����
���������

������ ����� �� ����

Figure 5: Comparison of Spark and MonoSpark for
queries in the big data benchmark, using scale factor of 5,
compressed sequence files, and 5 worker machines. Two
configurations of Spark are shown: the default, and a
configuration where Spark writes through to disk rather
than leaving disk writes in the buffer cache.

on in §5.2, and to include a workload (the machine learning
workload) that avoids Spark-specific CPU overheads.

5.2 Does getting rid of fine-grained pipelining
hurt performance?

We evaluate MonoSpark using three workloads that represent
a variety of applications and a variety of performance bot-
tlenecks. In order to effectively evaluate whether changing
fine-grained pipelining to single-resource monotasks harms
performance, we chose workloads that do not have one re-
source with dramatically higher utilization than all other re-
sources, as we elaborate on below. Workloads with several
highly utilized resources put the most stress on strategies that
re-arrange resource use, because resource use needs to be
parallelized to maintain fast job completion time.

This section presents the high-level results of comparing
MonoSpark to Spark for the three benchmark workloads; §5.3
and §5.4 describe differences in performance in more detail.

Sort The first workload sorts 600GB of random key-value
pairs from disk using twenty worker machines that each have
two hard disk drives. The job reads the input data from HDFS,
sorts it based on the key, and stores the result back in HDFS.
We tuned the workload to use CPU and disk roughly equally
by adjusting the size of the value (smaller values result in
more CPU time, as we elaborate on in §6.2). For this work-
load, Spark sorts the data in a total of 88 minutes (36 minutes
for the map stage and 52 minutes for the reduce stage), and
MonoSpark sorts the data in 57 minutes (22 minutes for the
map stage and 35 minutes for the reduce stage). The reason
MonoSpark is faster than Spark for this workload is discussed
further in §5.4.

�
���
���
���
���
�

���� ��������
��������

��� ���� ��������
��������

�
���
��
��
��
�

�����
���������

Figure 6: Utilization of the most utilized (i.e., bottleneck)
resource, and the second most utilized resource during
stages in the big data benchmark, for both Spark and
MonoSpark. Boxes show the 25, 50, and 75th percentiles;
whiskers show 5th and 95th percentiles.

Big Data Benchmark The big data benchmark [31] was
developed to evaluate the differences between analytics frame-
works and was derived from a benchmark developed by Pavlo
et al. [27]. The input dataset consists of HTML documents
from the Common Crawl document corpus [2] combined
with SQL summary tables generated using Intel’s Hadoop
benchmark tool [35]. The benchmark consists of four queries
including two exploratory SQL queries, one join query, and
one page-rank-like query. The first three queries have three
variants that each use the same input data size but have dif-
ferent result sizes to reflect a spectrum between business-
intelligence-like queries (with result sizes that could fit in
memory on a business intelligence tool) and ETL-like queries
with large result sets that require many machines to store. The
fourth query performs a transformation using a Python script.
We use the same configuration that was used in published
results [31]: we use a scale factor of five (which is the largest
scale factor available) and a cluster of five worker machines
that each have two HDDs.

Figures 5 compares runtime with MonoSpark to runtime
with Spark for each query in the workload. For all queries
except 1c, MonoSpark is at most 5% slower and as much
as 21% faster than Spark. Query 1c takes 55% longer with
MonoSpark, which we discuss in more detail, along with the
second configuration of Spark, in §5.3.

Figure 6 shows the resource utilization of the two most
utilized resources on each executor during each stage of the
big data benchmark queries, and illustrates two things. First,
multiple resources were well-utilized during most stages. Sec-
ond, MonoSpark utilized resources as well as or better than
Spark.

We also ran the big data benchmark queries on machines
with two SSDs (as opposed to two HDDs), to understand how
different hardware affects the relative performance of Spark
and MonoSpark. On SSDs, the MonoSpark is at most 1%
slower than Spark and up to 24% faster; detailed results are
omitted for brevity.

Monotasks: Architecting for Performance Clarity SOSP ’17, October 28, 2017, Shanghai, China

�
��
��
��
��
���
���

������
������ �

���� ������ ������
������ �

�����

��
�
��
�
��
��
��
�
��
�
�
��
�

�����
���������

Figure 7: Comparison of Spark and MonoSpark for each
stage of a machine learning workload that computes a
least squares fit using 15 machines.

Machine Learning The final workload is a machine learn-
ing workload that computes a least squares solution using a
series of matrix multiplications3 on a cluster of 15 machines,
each with 2 SSDs. Each multiplication involves a matrix with
one million rows and 4096 columns. Tasks in the workload
each perform a matrix multiplication on a block of rows. This
workload differs from the earlier workloads for three reasons.
First, it has been optimized to use the CPU efficiently: matri-
ces are represented as arrays of doubles that can be serialized
quickly, and each task calls out of the JVM to optimized native
code written using OpenBLAS [3]. Second, a large amount
of data is sent over the network in between each stage; com-
bined with the fact that CPU use has been optimized, this
workload is network-intensive. Finally, the workload does not
use disk, and stores shuffle data in-memory. As with other
workloads, MonoSpark provides performance on-par with
Spark, as shown in Figure 7.

5.3 When is MonoSpark slower than Spark?
MonoSpark can be slower than Spark in two cases. First,
MonoSpark can be slower when a workload is not broken into
sufficiently many multitasks. By using monotasks, MonoSpark
eliminates fine-grained pipelining, a technique often consid-
ered central to performance. MonoSpark’s coarser-grained
pipelining will sacrifice performance when the pipelining is
too coarse, which occurs when the job has too few multitasks
to pipeline one multitask’s disk read, for example, with an
earlier multitask’s computation. Figure 8 plots the runtime of
MonoSpark and Spark for a workload that reads input data
from disk and then performs a computation over it, using
different numbers of tasks. For each number of tasks, we
repartition the input data into a number of partitions equal
to the desired number of tasks. When the number of tasks is
equal to the number of cores (the left most point), MonoSpark
is slower than Spark, but as the number of tasks increases,

3The workload uses the block coordinate descent implementation in a dis-
tributed matrix library for Apache Spark, available at https://github.com/
amplab/ml-matrix/.

�

�

��

��

��

��

��� ��� ��� ���� ����

��
�
��
�
��
��
��
�
��
�
�
��
�

������ �� �����

�����
���������

Figure 8: Comparison of runtime with Spark and
MonoSpark for a job that reads input data and then com-
putes on it, running on 20 workers (160 cores). Spark is
faster than MonoSpark with only one or two waves of
tasks, but by three waves, MonoSpark’s pipelining across
tasks has overcome the performance penalty of eliminat-
ing fine grained pipelining.

MonoSpark can do as well as Spark by pipelining at the gran-
ularity of monotasks. This effect did not appear in any of the
benchmark workloads that we ran because the default con-
figuration for all of those workloads broke jobs into enough
tasks to enable pipelining across different monotasks.

The second reason MonoSpark may be slower than Spark
stems from how disk writes are treated: Spark writes data to
buffer cache, and does not force data to disk. Disk monotasks,
on the other hand, flush all writes to disk, to ensure that
future disk monotasks get dedicated use of the disk, and
because the ability to measure the disk write time is critical
to performance clarity. This difference explains why query 1c
in the big data benchmark was 55% slower with MonoSpark:
each disk writes 511MB of data for MonoSpark but less than
200KB for Spark. We configured the operating system to
force Spark to flush writes to disk and the resulting big data
benchmark query runtimes are show in Figure 5. When Spark
writes the same amount of output to disk as MonoSpark, query
1c is only 9% slower with MonoSpark.

5.4 When is MonoSpark faster than Spark?
In some cases, MonoSpark can provide faster runtimes than
Spark. This is occurs for two reasons. First, per-resource
schedulers control contention, which results in higher disk
bandwidth for workloads that run on hard disk drives, due to
avoiding unnecessary seeks. The effect explains MonoSpark’s
better performance on the sort workload and on some queries
in the big data benchmark, where controlling disk contention
resulted in roughly twice the disk throughput compared to
when the queries were run using Spark.

Second, the per-resource schedulers allow monotasks to
fully utilize the bottleneck resource without unnecessary

https://github.com/amplab/ml-matrix/
https://github.com/amplab/ml-matrix/

SOSP ’17, October 28, 2017, Shanghai, China K. Ousterhout et al.

��
����
����
����
����
��

���� ���� ���� ���� ���� ���� ����

�
���
��
��
��
�

��������

�����

��� ������ ������

������
��������
������

���� ���� ���� ���� ���� ���� ����

�
���
��
��
��
�

��������

���������

Figure 9: Utilization during the map stage of query 2c in
the big data benchmark. With MonoSpark, per-resource
schedulers keep the bottleneck resource fully utilized.

contention. Figure 9 shows one example when MonoSpark
achieved better utilization. The figure plots the utilization on
one machine during a thirty second period in the map stage of
query 2c in the big data benchmark. Over the entire map stage,
the per-resource schedulers in MonoSpark keep the bottleneck
resource, CPU, fully utilized: the average utilization is over
92% for all machines. With Spark, on the other hand, each
task independently determines when to use resources. As a
result, at some points, tasks bottleneck on the disk while CPU
cores are unused, leading to lower utilization of the CPU (75
- 83% across all machines) and, as a result, longer completion
time. This problem would persist even with proposals that
use a task resource profile to assign tasks to machines [16].
Resource profiles based on average task resource use do not
account for how resource consumption arrives over the course
of the task, so cannot avoid contention caused by fine-grained
changes in resource use.

6 REASONING ABOUT PERFORMANCE
Explicitly separating the use of different resources into mono-
tasks allows each job to report the time spent using each re-
source. These times can be used to construct a simple model
for the job’s completion time, which can be used to answer
what-if questions about completion time under different hard-
ware or software configurations. In this section, our goal is not
to design a model that perfectly captures job completion time;
instead, our goal is to design a model that is simple and easy to
use, yet sufficiently accurate to provide estimates to users who
are evaluating the benefit of different hardware or software
configurations. We use the model to answer four “what-if”
questions about how a job’s runtime would change using a
different hardware configuration, software configuration, or a
combination of both. The model provides predictions within
28% of the actual runtime – even when the runtime changes
by as much as a factor of 10. In addition, we show that our

Ideal CPU time: total
CPU monotask time /

CPU cores

Ideal network
runtime

Ideal disk runtime
(bottleneck)

Job runtime: max
of ideal times

Ideal CPU time
(bottleneck)

Ideal network
runtime

Ideal disk runtime
 with 2x disk
throughput

Job runtime with
2x disk throughput

Figure 10: Monotask runtimes can be used to model job
completion time as the maximum runtime on each re-
source. This example has 4 CPU cores and 2 hard disks.

model makes it trivial to determine a job’s bottleneck and
demonstrate its use to replicate the bottleneck analysis results
from [25]. Finally, we evaluate the effectiveness of applying
the same model to Spark.

6.1 Modeling performance
Decomposing jobs into monotasks leads to a simple model
for job completion time. To model job completion time, each
stage is modeled separately (since stages may have differ-
ent bottlenecks), and the job completion time is the sum
of the stages’ completion times. Modeling the completion
time of a stage involves two steps. First, information about
the monotasks can be used to compute the ideal time spent
running on each resource, which we call the ideal resource
completion time. For the CPU, the ideal time is the sum
of the time for all of the compute monotasks, divided by
the number of cores in the cluster. For example, if a job’s
CPU monotasks took a total of twenty minutes, and the job
ran on eighty cores, the ideal CPU time would be fifteen
seconds, because all of the CPU monotasks could have com-
pleted in fifteen seconds if perfectly parallelized. For I/O
resources, the ideal resource time can be calculated using
the total data transmitted and the throughput of the resource:
ideal I/O resource time = sum of data transferred

resource throughput . For example, if
a stage read twenty gigabytes from disk, and used ten disks
that each provided 100 megabytes per second of read through-
put, the ideal disk time would be twenty seconds.

The second step in building the model is to compute the
ideal stage completion time, which is simply the maximum
of any resource’s completion time, as shown in Figure 10. In
essence, the ideal stage completion time is the time spent on
the bottleneck resource.

This model is simple and ignores many practicalities, in-
cluding the fact that resource use cannot always be perfectly
parallelized. For example, if one disk monotask reads much
more data than the other disk monotasks, the disk that exe-
cutes that monotask may be disproportionately highly loaded.
Furthermore, all jobs have a ramp up period where only one
resource is in use; e.g., while the first network monotasks are

Monotasks: Architecting for Performance Clarity SOSP ’17, October 28, 2017, Shanghai, China

��
����
����
����
����
����
����
����
����
����

��������� ��������� ���������

��
��
��
��
��
�

��������

����������������
���������������������

������������������

Figure 11: Monotask runtimes can be used to model job
runtime on different cluster configurations. In this exam-
ple, monotask runtimes from experiments on a cluster of
20 8-core, 1 SSD machines was used to predict how much
faster the job would run on a cluster with twice as many
disks on each machine.

executing for a reduce task. Despite these omissions, we find
that our model is sufficiently accurate to answer broad what-if
questions, which we believe is preferable to a perfectly ac-
curate but complex model that is difficult to understand and
apply.

The model for job completion time can trivially be used to
determine the bottleneck, which is simply the resource with
the longest ideal resource completion time.

6.2 Predicting runtime on different hardware
While understanding the bottleneck is useful, the model pro-
vides the most value in allowing users to answer what-if
questions about performance. For example, to compute how
much more quickly a job would complete if the job had twice
as much disk throughput available, the ideal disk time would
be divided by two, and the new modeled job completion time
would be the new maximum time for any of the resources.
An example of this process is shown on the right side of Fig-
ure 10. To compute the new estimated job completion time,
we scale the job’s original completion time by the predicted
change in job completion time based on the model. This helps
to correct for inaccuracies in the model; e.g., not modeling
time when resource use cannot be perfectly parallelized.

Figure 11 illustrates the effectiveness of the model in pre-
dicting the runtime on a cluster with twice as many SSDs
for three different versions of a sort workload. The figure
shows the runtime on a 20-machine cluster with one SSD per
worker, the predicted time on a cluster with two SSDs per
worker (based on monotask runtimes on the one SSD clus-
ter), and the actual runtimes on a cluster with two SSDs per
worker. The workload sorts 600GB of key-value pairs, where
each value is an array of longs. Increasing the size of the
value array while fixing the total data size decreases the CPU
time (because fewer keys need to be sorted) while keeping

�
���
���
���
���
���
���
���
���
���
����

�� �� �� �� �� �� �� �� �� �

��
��
��
�
��
�

�����

�������� ������� �������
��������� ������

������ ������

Figure 12: For all queries in the big data benchmark
except 3c, the monotasks model correctly predicts the
change from changing each machine to have only 1 disk
instead of 2.

the I/O demand fixed. We change the size of the value array
(to be 10, 20, and 50) to evaluate how effective the model
is for different balances of resources. With only 10 values
associated with each key, the workload is CPU-bound, so the
model predicts no change in the job’s completion time as a
result of adding another disk on each worker. In this case,
the error is the largest (9%), because the workload does see a
modest improvement from adding an extra disk (this improve-
ment stems from reducing the duration of transient periods
where the disk is the bottleneck, e.g., when starting a stage,
where data must be read from disk before other resources can
start). For the other two workloads, the model predicts the cor-
rect runtime within a 5% error. For both of these workloads,
computing the new runtime with twice as many disks isn’t
as simple as dividing the old runtime by two. In at least one
of the stages of both workloads, adding an extra disk shifts
the bottleneck to a different resource (e.g., to the network)
leading to a smaller than 2⇥ reduction in job completion time.
The monotasks model correctly captures this.

Figure 12 uses the model to predict the effect of removing
one of the two disks on each machine in the big data bench-
mark workload from §5. A user running the workload might
wonder if she could use just one disk per machine instead of
two, because most queries in the workload are CPU bound
(as discussed further in §6.5). The monotasks model correctly
predicts that most queries change little from eliminating a
disk: the predictions for all queries except query 3c are within
9% of the actual runtime.

The prediction has highest error for query 3c, when it
overestimates the new runtime by 28%. This occurs because
monotasks incorrectly predicts the change in runtime for a
large shuffle stage that makes up approximately half of the
job runtime. On-disk shuffles are the most difficult types of
stage in which to get high utilization for both MonoSpark and
Spark, because maintaining high utilization for the multitasks
running on any one machine requires a steady flow of shuffle

SOSP ’17, October 28, 2017, Shanghai, China K. Ousterhout et al.

data being read from all of the other machines in the cluster.
A single slow disk can block progress on all other machines
while those machines wait for shuffle data from the slow disk.
This problem is most pronounced when all three resources are
used equally, in which case all resources on all machines must
consistently be driven to high utilization to get the best perfor-
mance. All three resources are used equally for the two-disk
configuration, and performance is poor as a result: the average
CPU, disk, and network utilization on each executor during
this stage is roughly 50%. Since all resources are evenly bot-
tlenecked, the model predicts that the runtime for that stage
will increase by a factor of two once a disk is removed. In-
stead, when a disk is removed, MonoSpark is able to drive
the bottleneck resource (now, the disk) to a higher utilization,
and as a result, the stage only gets approximately 40% slower.
Improving monotasks scheduling to enable uniformly higher
resource utilizations would reduce this modeling error.

6.3 Predicting runtime with deserialized data
The model can also be used for more sophisticated what-if
scenarios; e.g., to estimate the improvement in runtime if in-
put data were stored in-memory and deserialized, rather than
serialized on disk. This requires modeling two changes. First,
data no longer will be read from disk. We account for this
change by not including time for disk monotasks that read
input data when we compute the ideal disk time (this is pos-
sible because each monotask reports metadata that includes
whether the task was to read input or write output). Second,
the job will spend less time using the CPU, because input
data is already deserialized. MonoSpark separates the com-
pute monotask into a first part that deserializes all of the data,
and a second part that performs the remaining computation,
and the compute monotask reports how long each part took.
To model job completion time when data is already deseri-
alized, we do not include the time to deserialize input data
when modeling ideal CPU time. Using the new modeled ideal
times, we calculate the new job completion time. We used this
approach to predict the runtime of a job that sorted random on-
disk data if data were stored deserialized in-memory, and the
model predicted the new runtime within an error of 4% (the
model predicted that the job’s runtime would reduce from
48.5 seconds to 38.0 seconds, and the job’s actual runtime
with in-memory data was 36.7 seconds).

Separating the deserialization time from the rest of the
computation is only possible because of the use of monotasks.
Deserialization time cannot be measured in Spark because of
record-level pipelining: Spark deserializes a single record and
computes on that record before deserializing the next record,
and processing a single record is too fast to time without
significant overhead.

��
����
����
����
����
�����
�����
�����
�����

��������� ��������� ���������

��
��
��
��
��
�

��������

��
��

���

Figure 13: The monotasks model predicts the 10⇥ im-
provement in runtime resulting from moving a workload
from 5 machines with hard-disk-drives and input stored
on-disk to 20 machines with solid-state-drives and input
stored deserialized and in-memory with an error of at
most 23%.

6.4 Predicting with both hardware and
software changes

Thus far, we have shown how the monotasks model can be
used to predict runtime changes resulting from a single change
to the hardware or software configuration. The simple model
can also accurately predict runtime changes stemming from
multiple changes to both hardware and software. Figure 13 il-
lustrates the change in runtime for 3 workloads that are moved
from a 5-machine HDD cluster to a 20-machine SSD cluster.
All workloads read 100GB of input data, sort it, and write it
back to disk; the three workloads vary in the ratio of CPU to
disk time, as in §6.2. The 100GB of input data did not fit in
memory on the 5 machine cluster (it takes up approximately
200GB in memory), but with 20 machines, there is enough
cluster memory to store input data in a deserialized format.
In total, there are three changes associated with moving the
workload to 20 machines: the workload runs on 4⇥ as many
machines (the number of tasks stays constant), input data is
stored deserialized and in-memory rather than on-disk, and
machines each have 2 SSDs rather than 2 HDDs, so shuffle
and output data can be read and written more quickly. The
monotasks model correctly predicts the resulting 10⇥ change
in runtime with an error of 23% in the worst case.

To give an example of the changes that occurred as a result
of the hardware and software changes, the workload with 10
values was bottlenecked by disk on the 5-machine cluster
in both the map and reduce stages. The monotasks model
correctly predicted that, given the hardware changes, the map
stage became CPU-bound (due to a combination of input
data being stored in-memory, and the faster write time for the
shuffle data), and the reduce stage became network bound
(due to the faster read time for shuffle data and write time
for output). One source of error for all three workloads was

Monotasks: Architecting for Performance Clarity SOSP ’17, October 28, 2017, Shanghai, China

�

���

���

���

���

���

���

�� �� �� �� �� �� �� �� �� �

��
��
��
�
��
�

�����

�������� ��������� �������
���� ������� ���� �� ���
���� ������� ���� �� ����

���� ������� ���� �� �������

Figure 14: Monotask runtimes can be used to replicate
previous work that used extensive logging to determine
the job completion time if different resources were opti-
mized to be infinitely fast (which serves as a bound on
improvements from optimizing that resource).

the network time. The model assumed that the same amount
of data was sent over the network in both the 5-machine and
20-machine case. However, with 5 machines, each task could
read 20% of its input data locally, whereas with 20-machines,
an average of only 5% of input data could be read locally. As
a result, the workloads on 20-machines sent more data over
the network (and, correspondingly, spent more time using the
network) than the model predicted.

6.5 Understanding bottlenecks
In addition to predicting runtime under different hardware and
software configurations, our model can be used for simpler
bottleneck analysis. Recent work [25] dedicated to answering
that question added instrumentation to Spark to measure times
blocked on the network and disk, and used those measure-
ments to determine the best-case improvement from optimiz-
ing disk and network: i.e., it used blocked times to determine
how much faster jobs would run if they did not spend any
time blocked on a particular resource. The analysis relied on
adding extensive white-box logging to Spark; with monotasks,
the necessary instrumentation (i.e., the runtime of different
types of monotasks) is built into the framework’s execution
model. Typically the monotasks model predicts job comple-
tion time by taking the maximum of the ideal CPU, network,
and disk times. The best-case job completion time if the disk
were optimized can be computed by simply excluding the
disk from the maximum, so instead taking the maximum over
the ideal network and CPU times. Figure 14 illustrates these
predictions using monotask runtimes for the big data bench-
mark used in [25]. We arrive at the same findings as [25]:
for the big data benchmark, CPU is the bottleneck for most
queries, improving disk speed could reduce runtime of some
queries, and improving network speed has little effect. Some
queries see improvement from optimizing multiple resources

�
���
���
���
���
���
���
���
���
���
����

�� �� �� �� �� �� �� �� �� �

��
��
��
�
��
�

�����

�������� �������
��������� ������ ����� �� ������

������ ������

Figure 15: Using the number of slots to model the change
in job completion time from reducing the number of
disks does not result in correct predictions.

(e.g., query 3c) because the query consists of multiple stages
that each have different bottlenecks.

6.6 Can this model be used for Spark?
This section explores whether the model we used to predict
performance with MonoSpark could be applied to Spark,
without re-architecting internals. Creating a model for job
completion time is easy in MonoSpark because instrumenta-
tion for use of different resources is built into the framework
architecture: resource use is separated into monotasks, and
each monotask reports how long it took to complete. While
MonoSpark controls resource use with per-resource mono-
tasks, Spark controls resource use with slots: as mentioned
in §3.4, the job scheduler assigns tasks to machines in a fixed
number of slots, and controlling this number of slots is the
only mechanism the scheduler has for regulating resource use.
The most straightforward way to apply the monotasks model
to Spark is to use slots in the same way that the monotasks
model uses monotasks: for example, if a job took 10 seconds
to complete on a cluster with 8 slots, it should take 5 seconds
to complete on a cluster with 16 slots. Figure 15 illustrates
the effectiveness of this model, for the same prediction shown
in Figure 12, where the runtime of the big data benchmark on
machines with 2 HDDs is used to predict runtime on a cluster
with 1 HDD per machine. Spark sets the number of slots to be
equal to the number of CPU cores, so changing the number of
disk drives does not change the number of slots. As a result,
this model is inaccurate: it does not account for the slowdown
that occurs when queries become disk bound. The user could
scale the number of slots to 4 rather than 8, to account for the
reduction in disk usage, but this would lead to predicting that
queries would take twice as long with the reduced number of
disks, which is only true for disk-bound queries. Fundamen-
tally, the problem is that Spark uses one dimension, slots, to
control resource use that is multi-dimensional.

Unfortunately, measuring Spark’s resource usage to cre-
ate a more sophisticated model is difficult. Spark tasks on

SOSP ’17, October 28, 2017, Shanghai, China K. Ousterhout et al.

�

���

���

���

���

���

���

���

��
�
��
�
�
��
�

����� ����� �����

�

���

����

����

����

����

����

����

����

�
���
�
�

���������

�

���

���

���

���

���

���

��������
������

�
��
�
��
�
�
�

������

Figure 16: When multiple jobs are run concurrently in
Spark, attributing resource to a particular job is difficult
to do accurately. For one stage of one of the jobs, our
estimate of resource usage was consistently inaccurate.

a machine all run in a single process (the Java virtual ma-
chine), and resource usage of different concurrent tasks is
interleaved by both Spark and the operating system sched-
uler. We measured this effect by running two different sort
workloads concurrently: the 10-value and 50-value workloads
from §6.2. We estimated resource use for each job by mea-
suring the total resource use on each executor while each
stage was running, and estimating each stage’s resource use
by scaling each executor’s total resource use by the fraction
of slots that were used by tasks for the stage. For example,
if a stage ran for 10 seconds, and one executor with eight
slots ran four, five-second tasks, we would divide the total
resource use on the executor by four. Figure 16 shows this es-
timate, for the map stage in the 10-value job. These estimates
are consistently incorrect, sometimes by a factor of two or
more, because resource use is attributed equally to both jobs,
rather than accounting for the jobs’ different resource pro-
files. The median and 75th percentile error for all resources in
both stages of both jobs is 17% and 68%, respectively, with
Spark. Monotask times can easily be used to decouple re-
source use for the same two jobs: with MonoSpark, the error
is consistently less than 1%.

Figure 16 illustrated why measuring resource use in Spark
is difficult. If we could measure the resource use in Spark,
would the model be accurate? While we cannot measure the
resource use of each task, the monotask model relies on taking
the aggregate resource use for an entire stage (by summing all
of the monotask times for each resource, in each stage). We
approximated this process in Spark by measuring the resource
use on each executor while the big data benchmark is running
in isolation. Because no other workloads were running, all of
the resource use on each executor can be attributed to the stage.
We used these resource uses as inputs to the monotasks model;
Figure 17 illustrates the results. The model underestimates
the increase in job completion time that results from using
only one disk: the error ranges from 3%, for query 1a, to over
50%, for query 1c. This error stems from the challenges to
reasoning about performance outlined in §2. In particular, one

�
���
���
���
���
���
���
���
���
���
����

�� �� �� �� �� �� �� �� �� �

��
��
��
�
��
�

�����

�������� �������
��������� ������ ����� �� �������� ����

������ ������

Figure 17: Even in cases where Spark’s resource use can
be measured to make a more accurate model than the
slot-based approach in Figure 15, a Spark-based model
has an error of 20-30% for most queries.

source of error is contention: when all tasks use one disk,
contention leads to reduced disk throughput, which is not
captured by the model.

We are able to model Spark performance only in a restricted
case (when a job runs in isolation) and even in this case,
the error was higher than the error for the same scenario
using MonoSpark. This model can only be used for hardware
changes; as mentioned in §6.3, it is not possible to measure
deserialization time in Spark.

7 LEVERAGING CLARITY:
AUTO-CONFIGURATION

Because MonoSpark explicitly schedules the use of each re-
source, the framework has better visibility to automatically
perform configuration that users are typically required to do.
One configuration parameter that MonoSpark can set auto-
matically is the appropriate amount of concurrency on each
worker. Spark sets the number of concurrent tasks on each
worker to be the number of cores on the worker, and allows
users to change this by setting a configuration parameter. Dif-
ferent configurations will work better for different workloads;
for example, the user might want to increase concurrency
to more than the number of cores if each worker machine
has a large number of disks, and tasks are not CPU-intensive.
MonoSpark eliminates this configuration parameter, because
concurrency is controlled by each resource scheduler, as de-
scribed in §3.4.

Figure 18 compares performance with MonoSpark to per-
formance under a variety of Spark configurations, for three
different workloads. The workloads each sort randomly gen-
erated key-value pairs by key, and differ in the number of
values associated with each key, as in the workload in §6.2.
The different characteristics of each workload mean that the
best Spark configuration differs across workloads, and to ex-
tract optimal performance, a user would need to tune this

Monotasks: Architecting for Performance Clarity SOSP ’17, October 28, 2017, Shanghai, China

��

���

���

���

���

����

����

������ ������ ������ ������ ������� ����

��
��
��
�
��
��
��
��
��
�
��
��
��
�� ��������

�����������
����������

(a) Single Long

��
���
���
���
���
���
���
���
���
���

������ ������ ������ ������ ����

��
��
��
�
��
��
��
��
��
�
��
��
��
�� ��������

�����������
����������

(b) 25 Longs

��
���
���
���
���
���
���
���
���

������ ������ ������ ������ ����

��
��
��
�
��
��
��
��
��
�
��
��
��
�� ��������

�����������
����������

(c) 100 Longs

Figure 18: Runtimes for three different jobs, each under different configured numbers of tasks per machine with Spark
(e.g., Spark2 is Spark with 2 tasks per machine). MonoSpark automatically configures the number of tasks per machine,
and performs at least as well as the best Spark configuration for all three jobs.
configuration parameter to the correct value. MonoSpark au-
tomatically uses the ideal amount of concurrency for each
resource, and as a result, performs at least as well as the
best Spark configuration for all workloads. In some cases,
MonoSpark performs as much as 30% better than Spark. This
is for two reasons: first, Spark doesn’t allow users to change
the number of concurrent tasks between the stages, and some-
times the ideal value differs for the two stages. Second, the
disk monotask scheduler controls concurrent disk accesses to
avoid unnecessary seeking.

8 LIMITATIONS AND OPPORTUNITIES
This section begins with fundamental limitations of using
monotasks, and then discusses opportunities to improve our
current implementation.

Jobs with few tasks As illustrated in §5.3, if a job has a
small number of multitasks relative to the available resources,
then there may be no opportunities for coarse-grained pipelin-
ing across different monotasks. For the benchmark workloads
we ran, we did not find this to be a problem, because the
default configuration of all three workloads broke jobs into
a sufficiently large number of multitasks. Many frameworks
today encourage the use of a large number of small multitasks
for performance reasons: having a large number of small tasks
mitigates the effect of stragglers [24, 34] and helps to avoid
situations where the task’s intermediate data is so large that it
needs to be spilled to disk [29]. Workloads that have only a
single wave of multitasks will need to be broken into a larger
number of smaller multitasks in order to run efficiently with
monotasks, which can be done by changing a parameter when
jobs are submitted.

Jobs with large tasks Frameworks like Spark and Hadoop
allow tasks to handle more data than can fit in memory: if
a task’s intermediate data does not fit in memory, tasks will
spill the data to disk and merge it at the end. However, in
MonoSpark, data must fit in a buffer in-memory after it is
read from (or before it is written to) persistent storage. As
is the case for jobs with too few tasks, jobs with multitasks

that are too large will need to be run with a larger number of
smaller multitasks with monotasks.

Head of line blocking A monotask that reads a large
amount of data from disk may block other tasks reading from
that disk. This is not an issue with current frameworks be-
cause tasks share access to each resource at fine granularity.
Using smaller tasks mitigates this problem with monotasks.

Memory use As mentioned in §3.5, MonoSpark uses more
memory than Spark, because data is materialized in-memory
between different types of monotasks. This memory pres-
sure can alleviated by breaking jobs into a larger number of
multitasks, which results in each multitask operating on less
data, and, as a result, less data needing to be kept in-memory.
The monotasks design could also be augmented to include
a memory manager similar to the memory manager used in
Themis [28].

Caching data Disk monotasks do not write data to the
buffer cache because letting the OS manage the buffer cache
hurts predictability. This hurts our performance compared to
Spark for some jobs, as described in §5.3. MonoSpark could
leverage Spark’s application-level cache to opportunistically
avoid writing data to disk.

Disk scheduling The disk monotask scheduler currently
balances requests across available disks, independent of load.
A better strategy would consider the load on each disk in
deciding which disk should write data; for example, writing
to the disk with the shorter queue.

Multitask scheduling Our current implementation uses
a simple multitask scheduler that assigns up to a maximum
number of multitasks to each machine. This scheduler could
be used to implement more sophisticated policies, e.g., to
share machines between different users.

9 RELATED WORK
Performance clarity Most existing work approaches perfor-
mance clarity by treating the system architecture as fixed, and
either adding instrumentation or performing black-box exper-
iments to reason about performance [4, 7, 17, 25]. Section 2.2
described existing approaches to performance clarity for data

SOSP ’17, October 28, 2017, Shanghai, China K. Ousterhout et al.

analytics frameworks. Ongoing debate about the bottleneck
for data analytics frameworks suggests that reasoning about
performance remains non-trivial [22, 23, 25, 30].

Performance clarity has been studied more extensively in
the context of high-performance single-server applications.
Causal profiling simulates the impact of performance opti-
mizations by measuring the relative impact on performance
of slowing down concurrent code [11]. If applied to large-
scale distributed systems, causal profiling could answer the
type of what-if questions that we used monotasks to answer.
Flux takes an architectural approach, similar to monotasks:
engineers use the Flux language to write high-performance
servers, which enables both bottleneck identification and per-
formance prediction [8].

Improving analytics system performance Numerous re-
cent efforts have improved the performance of data ana-
lytics frameworks by optimizing CPU use; e.g., by reduc-
ing serialization cost, structuring computation to more effi-
ciently use CPU caches, taking advantage of vectorization,
and more [10, 22, 23, 33]. These efforts are orthogonal to
monotasks: they make workloads less CPU-bound, but do not
change the fine-grained pipelining of today’s multi-resource
tasks.

Improving resource scheduling A variety of scheduling
projects have improved on slot-based scheduling models to
account for use of multiple resources [14, 16]. These sched-
ulers use estimates of task resource use to determine how
many tasks to assign to each machine. They treat the structure
of the task as a black box, and do not schedule a task’s access
to each resource. As a result, tasks may still contend, even if
the average resource use of each task is less than the amount
of resources available on the machine, as discussed in §5.4.
Improving resource throughput with per-resource schedulers,
as is done with monotasks, has been explored in various sys-
tems that use disk schedulers to batch access and avoid seeks
(e.g., Themis [28] and Impala [9]).

Granularity of pipelining Traditional data processing sys-
tems use fine-grained pipelining to stream records between
operators, as in the Volcano operator model [15]. Themis [28],
for example, argues for record-at-a-time pipelining, where
each record is processed fully after reading, to avoid memory
pressure. We do not evaluate the very large scale (TBs of
data) workloads targeted by Themis. As discussed in §8, for
such workloads, we anticipate borrowing their insight for re-
duced memory pressure: i.e., for such workloads, multi- and
monotasks should act on fewer records.

Fine-grained pipelining has been revisited in the database
literature to improve performance and take advantage of vec-
torized execution [19, 26, 37]. For example, SQL server 2012
abandoned the row-at-a-time iterator model, and instead pro-
cesses a batch of (typically around 1000) rows at a time.
Monotasks similarly abandons fine-grained pipelining, but

with the different objective of easing users ability to reason
about performance bottlenecks.

10 CONCLUSION
This paper explored a new system architecture designed to
provide performance clarity. We proposed decomposing to-
day’s multi-resource tasks into smaller units of work, mono-
tasks, that each use only one of CPU, network, or disk. This
decomposition trivially enables users to understand the sys-
tem bottleneck, and also allows for accurate estimates of
the impact of potential system changes. Using monotasks
provides performance clarity without sacrificing high perfor-
mance. Performance with our implementation is comparable
to Apache Spark, and using monotasks presents new opportu-
nities for optimizations that we have not yet fully explored.

We believe that today, the primary obstacle to users who
are trying to improve performance of their workloads is not
that they have too few optimizations at their disposal, but
rather that they do not know which optimization to choose.
Furthermore, system bottlenecks are constantly changing, as
developers work to optimize current bottlenecks and as hard-
ware changes. As a result, optimizations that were effective
a few months ago may no longer be useful. We hope that by
illustrating that performance clarity can be provided as part
of a system’s architecture, providing performance clarity –
perhaps with monotasks – will be a first-class concern in the
design of new systems.

ACKNOWLEDGMENTS
We indebted to Shivaram Venkataraman, for discussions dur-
ing the tiny tasks project [24] that led to the idea of breaking
jobs into small, single-resource units of work, and to Max
Wolffe, for helping to implement disk optimization features in
early versions of MonoSpark. We thank Aurojit Panda, Eddie
Kohler, and Patrick Wendell for providing helpful feedback
on earlier drafts of this paper. Finally, we thank our shepherd,
Miguel Castro, for helping to shape the final version of this
paper. This research was supported in part by a Hertz Foun-
dation Fellowship, a Google PhD Fellowship, and Intel and
other sponsors of UC Berkeley’s NetSys Lab.

REFERENCES
[1] Apache Spark: Lightning-Fast Cluster Computing. http://spark.apache.

org/.
[2] Common Crawl. http://commoncrawl.org/.
[3] OpenBLAS: An optimized BLAS library. http://www.openblas.net/.
[4] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-

tacharoen. Performance Debugging for Distributed Systems of Black
Boxes. In Proc. SOSP, 2003.

[5] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang. CherryPick: Adaptively Unearthing the Best Cloud Config-
urations for Big Data Analytics. In Proc. NSDI, 2017.

http://spark.apache.org/
http://spark.apache.org/
http://commoncrawl.org/
http://www.openblas.net/

Monotasks: Architecting for Performance Clarity SOSP ’17, October 28, 2017, Shanghai, China

[6] Apache Software Foundation. Apache Hadoop. http://hadoop.apache.
org/.

[7] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for
request extraction and workload modelling. In Proc. SOSP, 2004.

[8] B. Burns, K. Grimaldi, A. Kostadinov, E. D. Berger, , and M. D. Corner.
Flux: A Language for Programming High-Performance Servers. In
Proc. Usenix ATC, 2006.

[9] Cloudera. Cloudera Impala: Open Source, Interactive SQL for Hadoop.
http://www.cloudera.com/content/cloudera/en/products-and-services/
cdh/impala.html.

[10] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Çetintemel, and S. B.
Zdonik. Tupleware: Redefining modern analytics. CoRR, 2014.

[11] C. Curtsinger and E. D. Berger. COZ: Finding Code that Counts with
Causal Profiling. In Proc. SOSP, 2015.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proc. OSDI, 2004.

[13] P. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and
S. Shenker. pHost: Distributed Near-optimal Datacenter Transport
Over Commodity Network Fabric. In Proc. CoNext, 2015.

[14] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types. In Proc. NSDI, 2011.

[15] G. Graefe. Encapsulation of Parallelism in the Volcano Query Process-
ing System. In Proc. SIGMOD, 1990.

[16] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella.
Multi-Resource Packing for Cluster Schedulers. In Proc. SIGCOMM,
2014.

[17] H. Herodotou. Hadoop performance models. CoRR, 2011.
[18] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Dis-

tributed Data-Parallel Programs From Sequential Building Blocks. In
Proc. EuroSys, 2007.

[19] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-Driven Paral-
lelism: A NUMA-Aware Query Evaluation Framework for the Many-
Core Age. In Proc. SIGMOD, 2014.

[20] N. McKeown. The iSLIP Scheduling Algorithm for Input-queued
Switches. IEEE/ACM Trans. Netw., 7(2), 1999.

[21] F. McSherry, M. Isard, and D. G. Murray. Scalability! But at What
Cost? In Proc. Hot OS, 2015.

[22] F. McSherry and M. Schwarzkopf. The impact of fast networks on
graph analytics, part 1. http://tinyurl.com/qaw9lla.

[23] F. McSherry and M. Schwarzkopf. The impact of fast networks on
graph analytics, part 2. http://tinyurl.com/q7aeajb, 2015.

[24] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin, S. Rat-
nasamy, S. Shenker, and I. Stoica. The Case for Tiny Tasks in Compute
Clusters. In Proc. HotOS, 2013.

[25] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun.
Making Sense of Performance in Data Analytics Frameworks. In Proc.
NSDI, 2015.

[26] S. Padmanabhan, T. Malkemus, A. Jhingran, and R. Agarwal. Block
oriented processing of Relational Database operations in modern Com-
puter Architectures. In Proc. ICDE, 2001.

[27] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker. A Comparison of Approaches to Large-scale Data
Analysis. In Proc. SIGMOD, 2009.

[28] A. Rasmussen, V. T. Lam, M. Conley, G. Porter, R. Kapoor, and A. Vah-
dat. Themis: An I/O-efficient MapReduce. In Proc. SoCC, 2012.

[29] S. Ryza. How-to: Tune Your Apache Spark Jobs (Part 2). goo.gl/
7gjmyfcontent_copyCopyshortURL, 2015.

[30] A. Trivedi, P. Stuedi, J. Pfefferle, R. Stoica, B. Metzler, I. Koltsidas,
and N. Ioannou. On The [Ir]relevance of Network Performance for
Data Processing. In HotCloud, 2016.

[31] UC Berkeley AmpLab. Big Data Benchmark. https://amplab.cs.
berkeley.edu/benchmark/, February 2014.

[32] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Stoica. Ernest:
Efficient Performance Prediction for Large-Scale Advanced Analytics.
In NSDI, 2016.

[33] R. Xin and J. Rosen. Project Tungsten: Bringing Spark
Closer to Bare Metal. https://www.databricks.com/blog/2015/04/28/
project-tungsten-bringing-spark-closer-to-bare-metal.html, 2015.

[34] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica.
Shark: SQL and Rich Analytics at Scale. In Proc. SIGMOD, 2013.

[35] L. Yi, K. Wei, S. Huang, and J. Dai. Hadoop Benchmark Suite (Hi-
Bench). https://github.com/intel-hadoop/HiBench, 2012.

[36] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In
Proc. NSDI, 2012.

[37] P. Åke Larson, C. Clinciu, E. N. Hanson, A. Oks, S. L. Price, S. Ran-
garajan, A. Surna, and Q. Zhou. SQL Server Column Store Indexes. In
Proc. SIGMOD, 2010.

http://hadoop.apache.org/
http://hadoop.apache.org/
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://tinyurl.com/qaw9lla
http://tinyurl.com/q7aeajb
https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/
https://www.databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://www.databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://github.com/intel-hadoop/HiBench

	Abstract
	1 Introduction
	2 Background
	2.1 Architecture of data analytics frameworks
	2.2 The challenge of reasoning about performance

	3 Monotasks architecture
	3.1 Design
	3.2 How are multitasks decomposed into monotasks?
	3.3 Scheduling monotasks on each worker
	3.4 How many multitasks should be assigned concurrently to each machine?
	3.5 How is memory access regulated?

	4 Implementation
	5 Monotasks Performance
	5.1 Experimental setup
	5.2 Does getting rid of fine-grained pipelining hurt performance?
	5.3 When is MonoSpark slower than Spark?
	5.4 When is MonoSpark faster than Spark?

	6 Reasoning about Performance
	6.1 Modeling performance
	6.2 Predicting runtime on different hardware
	6.3 Predicting runtime with deserialized data
	6.4 Predicting with both hardware and software changes
	6.5 Understanding bottlenecks
	6.6 Can this model be used for Spark?

	7 Leveraging clarity: Auto-Configuration
	8 Limitations and opportunities
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

