Making Sense of Performance in Data Analytics Frameworks

Kay Ousterhout

Joint work with Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, Byung-Gon Chun

UC Berkeley
About Me

PhD student at UC Berkeley

Thesis work centers around performance of large-scale distributed systems

Spark PMC member
Spark (or Hadoop/Dryad/etc.) task
Spark (or Hadoop/Dryad/etc.) task
How can we make this job faster?

Cache input data in memory
How can we make this job faster?

Cache input data in memory
How can we make this job faster?

- Cache input data in memory
- Optimize the network
How can we make this job faster?

- Cache input data in memory
- Optimize the network

...
How can we make this job faster?

- Cache input data in memory
- Optimize the network
- Mitigate effect of stragglers
Disk

Themis [SoCC ’12], PACMan [NSDI ’12], Spark [NSDI ’12], Tachyon [SoCC ’14]

Network

Load balancing: VL2 [SIGCOMM ‘09], Hedera [NSDI ’10], Sinbad [SIGCOMM ’13]
Application semantics: Orchestra [SIGCOMM ’11], Baraat [SIGCOMM ’14], Varys [SIGCOMM ’14]
Reduce data sent: PeriSCOPE [OSDI ’12], SUDO [NSDI ’12]
In-network aggregation: Camdoop [NSDI ’12]
Better isolation and fairness: Oktopus [SIGCOMM ’11], EyeQ [NSDI ’12], FairCloud [SIGCOMM ’12]

Stragglers

Scarlett [EuroSys ‘11], SkewTune [SIGMOD ’12], LATE [OSDI ’08], Mantri [OSDI ’10],
Dolly [NSDI ’13], GRASS [NSDI ’14], Wrangler [SoCC ’14]
Disk
Themis [SoCC ‘12], PACMan [NSDI ‘12], Spark [NSDI ‘12], Tachyon [SoCC ‘14]

Network
Load balancing: VL2 [SIGCOMM ‘09], Hedera [NSDI ‘10], Sinbad [SIGCOMM ‘13]
Application semantics: Orchestra [SIGCOMM ‘11], Baraat [SIGCOMM ‘14], Varys [SIGCOMM ‘14]
Reduce data sent: PeriSCOPE [OSDI ‘12], SUDO [NSDI ‘12]
In-network aggregation: Camdoop [NSDI ‘12]
Better isolation and fairness: Oktopus [SIGCOMM ‘11], EyeQ [NSDI ‘12], FairCloud [SIGCOMM ‘12]

Stragglers
Scarlett [EuroSys ‘11], SkewTune [SIGMOD ‘12], LATE [OSDI ‘08], Mantri [OSDI ‘10],
Dolly [NSDI ‘13], GRASS [NSDI ‘14], Wrangler [SoCC ‘14]

Missing: what’s most important to end-to-end performance?
Disk
- Themis [SoCC ’12], PACMan [NSDI ’12], Spark [NSDI ’12], Tachyon [SoCC ’14]

Network
- Widely-accepted mantras:
 - Network and disk I/O are bottlenecks
 - Stragglers are a major issue with unknown causes

Stragglers
- Scarlett [EuroSys ’11], SkewTune [SIGMOD ’12], LATE [OSDI ’08], Mantri [OSDI ’10], Dolly [NSDI ’13], GRASS [NSDI ’14], Wrangler [SoCC ’14]
This work

(1) How can we quantify performance bottlenecks?

Blocked time analysis

(2) Do the mantras hold?

Takeaways based on three workloads run with Spark
Takeaways based on three Spark workloads:

Network optimizations
can reduce job completion time by **at most 2%**

CPU (not I/O) often the bottleneck
<19% reduction in completion time from optimizing disk

Many straggler causes can be identified and fixed
Takeaways will not hold for every single analytics workload nor for all time
This work:

Accepted mantras are often not true

Methodology to avoid performance misunderstandings in the future
Outline

• **Methodology**: How can we measure Spark bottlenecks?

• **Workloads**: What workloads did we use?

• **Results**: How well do the mantras hold?

• **Why?**: Why do our results differ from past work?

• **Demo**: How can you understand your own workload?
Outline

• **Methodology**: How can we measure Spark bottlenecks?

• **Workloads**: What workloads did we use?

• **Results**: How well do the mantras hold?

• **Why?**: Why do our results differ from past work?

• **Demo**: How can you understand your own workload?
What’s the job’s bottleneck?
What exactly happens in a Spark task?

Task reads shuffle data, generates in-memory output

network
(1) Request a few shuffle blocks

compute
(2) Start processing local data
(3) Process data fetched remotely

disk

(4) Continue fetching remote data

☐: time to handle one shuffle block

time
What’s the bottleneck for this task?

Task reads shuffle data, generates in-memory output

- **network**: Bottlenecked on network and disk
- **compute**: Bottlenecked on network
- **disk**: Bottlenecked on CPU
What's the bottleneck for the job?

Tasks

Time

Task x: may be bottlenecked on different resources at different times

Time t: different tasks may be bottlenecked on different resources
How does network affect the job’s completion time?

Blocked time analysis: how much faster would the job complete if tasks never blocked on the network?
Blocked time analysis

(1) **Measure** time when tasks are blocked on the network

(2) **Simulate** how job completion time would change
(1) **Measure** time when tasks are blocked on network

- **Network**
 - Time blocked on network
- **Compute**
 - Time blocked on disk
- **Disk**
 - Original task runtime

Best case task runtime if network were infinitely fast
(2) **Simulate** how job completion time would change

- **time**
 - 2 slots
 - Task 0
 - Task 1
 - Task 2

- Incorrectly computed time: doesn’t account for task scheduling
 - time blocked on network

\(t_0 \): Original job completion time
(2) **Simulate** how job completion time would change

```
<table>
<thead>
<tr>
<th>Task 0</th>
<th>Task 1</th>
<th>Task 2</th>
</tr>
</thead>
</table>
```

- **2 slots**: timeblocked on network
- **t_0**: Original job completion time
- **t_n**: Job completion time with infinitely fast network
Blocked time analysis: how quickly could a job have completed if a resource were infinitely fast?
Outline

• **Methodology:** How can we measure Spark bottlenecks?

• **Workloads:** What workloads did we use?

• **Results:** How well do the mantras hold?

• **Why?:** Why do our results differ from past work?

• **Demo:** How can you understand your own workload?
Large-scale traces?
Don’t have enough instrumentation for blocked-time analysis
SQL Workloads run on Spark

Only 3 workloads

- **TPC-DS** (20 machines, 850GB; 60 machines, 2.5TB; 200 machines, 2.5TB)
- **Big Data Benchmark** (5 machines, 60GB)
- **Databricks** (Production; 9 machines, tens of GB)

Small cluster sizes

2 versions of each: in-memory, on-disk
Outline

• **Methodology:** How can we measure Spark bottlenecks?

• **Workloads:** What workloads did we use?

• **Results:** How well do the mantras hold?

• **Why?:** Why do our results differ from past work?

• **Demo:** How can you understand your own workload?
How much faster could jobs get from optimizing network performance?
How much faster could jobs get from optimizing network performance?

Median improvement: 2%
95%ile improvement: 10%
How much faster could jobs get from optimizing network performance?

Median improvement at most 2%

Median improvement at most 2%

[Box plot showing reduction in JCT for On-disk and In-memory workloads across different workloads: BDBench, TPC-DS, Production.]
How much faster could jobs get from optimizing disk performance?

Median improvement at most 19%
How important is CPU?

CPU much more highly utilized than disk or network!
What about stragglers?

5-10% improvement from eliminating stragglers
 Based on simulation

Can explain >60% of stragglers in >75% of jobs

Fixing underlying cause can speed up other tasks too!
 2x speedup from fixing one straggler cause
Takeaways based on three Spark workloads:

Network optimizations
can reduce job completion time by **at most 2%**

CPU (not I/O) often the bottleneck
<19% reduction in completion time from optimizing disk

Many straggler causes can be identified and fixed
Outline

• **Methodology:** How can we measure Spark bottlenecks?

• **Workloads:** What workloads did we use?

• **Results:** How well do the mantras hold?

• **Why?:** Why do our results differ from past work?

• **Demo:** How can you understand your own workload?
Why are our results so different than what’s stated in prior work?

Are the workloads we measured unusually network-light?

How can we compare our workloads to large-scale traces used to motivate prior work?
How much data is transferred per CPU second?

Microsoft ’09-’10: 1.9–6.35 Mb / task second
Google ’04-’07: 1.34–1.61 Mb / machine second
Why are our results so different than what’s stated in prior work?

Our workloads are network light

1) Incomplete metrics

2) Conflation of CPU and network time
When is the network used?

Input data (read locally)

- Map task
- Map task
- Map task

Reduce task
Reduce task

Output data

Some work focuses only on the shuffle

(1) To shuffle intermediate data
(2) To replicate output data
How does the data transferred over the network compare to the input data?

Not realistic to look only at shuffle! Or to use workloads where all input is shuffled.
Prior work conflates CPU and network time

To send data over network:

(1) Serialize objects into bytes
(2) Send bytes

(1) and (2) often conflated.
Reducing application data sent reduces both!
When does the network matter?

Network important when:

1. Computation optimized
2. Serialization time low
3. Large amount of data sent over network
Why are our results so different than what’s stated in prior work?

Our workloads are network-light

1) Incomplete metrics
 e.g., looking only at shuffle time

2) Conflation of CPU and network time
 Sending data over the network has an associated CPU cost
Limitations

Only three workloads

Small cluster sizes
Limitations aren’t fatal

Only three workloads
 Industry-standard workloads
 Results sanity-checked with larger production traces

Small cluster sizes
 Takeaways don’t change when we move between cluster sizes
Outline

• **Methodology**: How can we measure Spark bottlenecks?

• **Workloads**: What workloads did we use?

• **Results**: How well do the mantras hold?

• **Why?**: Why do our results differ from past work?

• **Demo**: How can you understand your own workload?
Demo
Often can tune parameters to shift the bottleneck (e.g., change snappy to lzf)
What’s missing from Spark metrics?

Time blocked on reading input data and writing output data (HADOOP-11873)

Time spent spilling intermediate data to disk (SPARK-3577)
Network optimizations can reduce job completion time by at most 2%

CPU (not I/O) often the bottleneck
<19% reduction in completion time from optimizing disk

Many straggler causes can be identified and fixed

Takeaway: performance understandability should be a first-class concern!
(almost) All Instrumentation now part of Spark

I want your workload! keo@eecs.berkeley.edu

All traces and tools publicly available:
tinyurl.com/summit-traces