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About Me 
PhD candidate at UC Berkeley 
 
Thesis work on performance of large-scale distributed 
systems 
 
Apache Spark PMC member 



About this talk 
Future architecture for systems like Spark 
 
Implementation is API-compatible with Spark 
 
Major change to Spark’s internals (~20K lines of code) 
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rdd.groupBy(…)…
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Realistic view: user uses performance characteristics to tune 
job, configuration, hardware, etc. 

Configuration:	
spark.serializer	KryoSerializer	
spark.executor.cores	8	

Users need to be able to reason about 
performance 



Reasoning about Spark Performance 

Widely accepted that network and disk I/O are bottlenecks 

CPU (not I/O) typically the bottleneck 
network optimizations can improve job completion time by at most 2% 



Reasoning about Spark Performance 

Spark Summit 2015: 
CPU (not I/O) often 

the bottleneck 

Project Tungsten: 
initiative to optimize Spark’s CPU use, 
driven in part by our measurements 



Reasoning about Spark Performance 

Spark Summit 2015: 
CPU (not I/O) often 

the bottleneck 

Project Tungsten: 
initiative to optimize 

Spark’s CPU use 

Spark 2.0: 
Some evidence that I/O 
is again the bottleneck 

[HotCloud ’16] 



Users need to understand performance to extract the best 
runtimes 

 
Reasoning about performance is currently difficult 

 
Software and hardware are constantly evolving, 

so performance is always in flux 
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Spark overview 
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New architecture: monotasks 

Reasoning about monotasks performance: why it’s easy 

Monotasks in action (results) 
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Read remote data 
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Write result to disk 
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Task 17 

Task 18 

Task 19 Task 1: 
Read block 1, filter, write result to disk 
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time 

Network read 

CPU (filter) 

Disk write 
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Task 18 

Task 19 
Task 1 

Network read 

CPU (filter) 

Disk write 

Challenge 1: Task pipelines multiple resources, 
bottlenecked on different resources at different times 

Task 
bottlenecked 
on disk write 

Task 
bottlenecked 
on network 

read 



Task 1 

Task 2 

Task 9 

Task 3 

Task 4 

Task 11 

Task 10 

Task 12 
time 

4 concurrent tasks 
on Worker 1 



Task 1 

Task 2 

Task 9 

Task 3 

Task 4 

Task 11 

Task 10 

Task 12 
time 

Challenge 2: 
Concurrent tasks may 

contend for 
 the same resource 

(e.g., network) 



Blocked time analysis: how quickly 
could a job have completed if a resource 

were infinitely fast? (upper bound) 

Spark Summit 2015: 

Result of ~1 year of adding metrics to Spark! 



Task 1 

Task 2 

Task 9 

Task 3 

Task 4 

Task 11 

Task 10 

Task 12 

How much faster 
would the job be with 
2x disk throughput? 

How would runtimes for these 
disk writes change? 

How would that change timing of 
(and contention for) other resources? 



Challenges to reasoning about performance 
Tasks bottleneck on different resources at different times  
 
Concurrent tasks on a machine may contend for resources 
 
No model for performance 
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Spark: 
Tasks 

bottleneck on 
different 
resources  

Concurrent 
tasks may 
contend 

No model for 
performance 

Monotasks: Each task uses one resource 

Example Spark Job: 
Read remote data 

Filter records 
Write result to disk 

 

Network monotasks: 
Each read one remote block 

…
	

CPU monotasks: 
Each filter one block, 

generate serialized output 
…
	

Disk monotasks: 
Each writes one block to disk 

…
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…
	

…
	

…
	

Network 
scheduler 

time 

CPU 
scheduler 

…	

…	

Disk 
scheduler …	

One task per CPU core 

One task per disk 
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Job runtime: 
max of ideal 

times 
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How much faster would the job be with 2x 
disk throughput? 

Dedicated 
schedulers control 

contention 

Ideal CPU time: 
total CPU monotask 
time / # CPU cores 

Ideal network runtime 

Ideal disk runtime 
(2x disk concurrency) 

Monotask times can 
be used to model 

performance 

New job runtime 



Spark: 
Tasks 

bottleneck on 
different 
resources  

Concurrent 
tasks may 
contend 

No model for 
performance 

Monotasks: 
Each task uses 
one resource 

Dedicated 
schedulers control 

contention 

Monotask times can 
be used to model 

performance 

Task 1 

Task 2 

Task 9 

Task 3 

Task 4 

Task 11 

Task 10 

Task 12 

…	

…	

…	

Compute monotasks: 
one task per CPU core 

Disk monotasks: one 
per disk 

Network monotasks 

How does this decomposition work? 



How does this decomposition work? 

Task 1 

Network read 
CPU 

Disk write 

Monotasks 

Network 
monotask 

Disk monotask Compute 
monotask 



 Implementation 
API-compatible with Apache Spark 

 Workloads can be run on monotasks without re-compiling 
 Monotasks decomposition handled by Spark internals 

 
Monotasks works at the application level 

 No operating system changes 



How can we achieve this vision? 
Spark overview 

Reasoning about Spark’s performance: why it’s hard 

New architecture: monotasks 
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Monotasks in action (results) 

 
 



Performance on-par with Apache Spark 
Big data benchmark 

(SQL workload) 
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Performance on-par with Apache Spark 

Sort 
(600 GB, 20 machines) 

Block coordinate descent 
(Matrix workload used in ML applications) 

16 machines 
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Monotasks in action 

Modeling performance 
 
Leveraging performance clarity to optimize performance 



How much faster would jobs run if each machine 
had 2 disks instead of 1? 
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Predictions for different hardware 
within 10% of the actual runtime 



How much faster would job run if data were de-
serialized and in memory? 

Eliminates disk time to read input data 
 

Eliminates CPU time to de-serialize data 



How much faster would job run if data were de-
serialized and in memory? 

Task 
18 

Spark Task 
Network 

CPU 

Disk write 

: (de)serialization time 

Measuring (de) serialization time with Spark 

(De) serialization pipelined with 
other processing for each record 

Application-level measurement 
incurs high overhead 



How much faster would job run if data were de-
serialized and in memory? 

: (de)serialization time 

Measuring (de) serialization time with Monotasks 

Eliminating fine-grained 
pipelining enables 

measurement! 

Original compute monotask 

Un-rolled monotask 



How much faster would job run if data were de-
serialized and in memory? 
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Eliminate disk monotask time 
 

Eliminate CPU monotask time 
spent (de)serialiazing 

 
Re-run model 

Sort 



Leveraging Performance Clarity to Improve 
Performance 

Schedulers have complete 
visibility over resource use 
 
Framework can configure for 
best performance 

…
	

…
	

…
	

Network 

time 

CPU 

…	

…	

Disk 
…	



Configuring the number of concurrent tasks 
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Spark with different numbers of 
concurrent tasks 

Monotasks better than any 
configuration: 

per-resource schedulers 
automatically schedule with the 

ideal concurrency 



Future Work 
Leveraging performance clarity to improve performance 
– Use resource queue lengths to dynamically adjust job 
 

Automatically configuring for multi-tenancy 
– Don’t need jobs to specify resource requirements 
– Can achieve higher utilization: no multi-resource bin packing 



Monotasks: 
Each task uses 
one resource 

Dedicated 
schedulers control 

contention 

Monotask times can 
be used to model 

performance 

…	

…	

…	

Compute monotasks: 
one task per CPU core 

Disk monotasks: one 
per disk 

Network monotasks 

Vision: 
Spark always reports 

bottleneck information 
 

Challenging with existing 
architecture 

Interested? Have a job whose performance 
you can’t figure out? Email me: 

keo@cs.berkeley.edu 


