Re-Architecting Apache Spark for
Performance Understandability

Kay Qusterhout

Joint work with Christopher Canel, Max Wolfte,
Sylvia Ratnasamy, Scott Shenker

About Me
PhD candidate at UC Berkeley

Thesis work on performance of large-scale distributec
Systems

Apache Spark PMC member

About this talk

Future architecture for systems like Spark
Implementation is API-compatible with Spark

Major change to Spark’s internals (~20K lines of code)

QQ [

NNNNEEEE:
i

runs the job fast

/

IS a black box

Spark cluster

b fast

|0

Spark cluster is a black box, runs the

ICVIew:

[dealist

HRRIRRRRiiaaag

b fast

|0

lack box, runs the

Ly

Spark clusterisab

ICVIew:

[dealist

pddTgPéupBy£=}m
rdd.reduceByKey(..)..

Configuration:
spark.serializer KryoSerializer
spark.executor.cores 8

Idealistic view: Spark cluster is a black box, runs the job fast

rdd. reduceByKey(e

Configuration:
spark.serializer KryoSerializer
spark.executor.cores 8

Realistic view: user uses performance characteristics to tune
job, configuration, hardware, etc.

Users need to be able to reason about
performance

Reasoning about Spark Performance

Making Sense of Spark Performance - Kay Ousterhout (UC Berkelej
DIS
Themis [SoCC 12], PACMan [NSDI '12], Spark [NSDI‘12], Tachyon [SoCC‘14]

s K‘u

Network pr

“;;‘f“‘a gm.F” o SCLOVMY 11, B (SIGCOMM 4Ny summlt2015
ANCISCO * JUNE 15 - 17, 2015

[S G(]
duce

DO [NSDI12]

2], 9
[NSD\ 12]

IGCOMM ‘1], EyeQ [NSDI “12], FairCloud

eeeee
MMMMMMMMMM

Stragglers

ett [Eu 11], SkewTune GMOD‘]Z] TE [0SDI ‘08], Mantri [0SDI “10],
Dy[SD 3]GRSS[SD 4], Wrangler [SoCC'14]

Widely accepted that network an“d disk 170 are bottlenecks

CPU (not 1/0) typically the bottleneck
network optimizations can improve job completion time by at most 2%

Reasoning about Spark Performance

@databricks erouct sear Resources company BLOG

Lcosenx A—| Project Tungsten: Bringing Spark Closer to Bare Metal

SGEOM 13 Hedera 5110 St [SGCOMM3]
t, we looked back and surveyed performance improvements made to Spark in

5 Oches [SGCOMM'1), B [SYGCOMN 4] Vi

SAN FRANCISCO - JUNE 1517, 2015
Ina previous blog
the past year. In this post, we look forward and share with you the next chapter, which we are calling

Project Tungsten. 2014 witnessed Spark setting the world record in large-scale sorting and saw major
improvements across the entire engine from Python to SQL to machine learning. Performance

optimization, however, is a never ending process.

Project Tungsten will be the largest change to Sparks execution engine since the project’s inception. It
focuses on substantially improving the ef y of memory and CPU for Spark applications, to push
performance closer to the limits of modern hardware. This effort includes three initiatives:

21,5000 101'2)
don: G [NSDI2)
s Oaps [SGLOMM"1,5eQ (S01"12FsClud

SlewTure [5G0 12, LATE (05019, Mants 05010
Dol NS5, GRASSNSDI14 Wl ScC" 1)

1. Memory Management and Binary Processing: leveraging application semantics to manage
memory explicitly and eliminate the overhead of JVM object model and garbage collection

i irteien b vinlnit e ans hinrarnbi

 rmrisbebinm: Almnrithe And Anb

A Pk~

Spark Summit 2015: PrOjeCt Tungg’[en;

CPtUhens(t)tltﬁ)n eOCEen initiative to optimize Spark’s CPU use,
driven in part by our measurements

Reasonir

Spark Summit 2015:
CPU (not 1/0) often
the bottleneck

g about Spark Performance

Spark 2.0:

Some evidence that 1/0
IS again the bottleneck
Project Tungsten: [HotCloud "16]
initiative to optimize
Spark’s CPU use

Users need to understand performance to extract the best
runtimes

Reasoning about performance is currently difficult

Software and hardware are constantly evolving,
so performance is always in flux

Vision: jobs report high-level performance metrics

SprK F— Jobs Stages Storage Environment Executors

Details for Stage 17

Total task time across all tasks: 13 min
Shuffle read: 2.5 GB / 31589120

Performance Information

Bottleneck: Disk (if disk bandwidth were increased by 23% or more, network would become the bottleneck)

Vision: jobs report high-level performance metrics

Spork F— Jobs Stages Storage Environment Executors

Details for Stage 17

Total task time across all tasks: 13 min
Shuffle read: 2.5 GB / 31589120

Performance Information

Bottleneck: Disk (if disk bandwidth were increased by 23% or more, network would become the bottleneck)
Non-bottlenecks: Network (could reduce network bandwidth by up to 30% slower without impacting runtime), CPU (could
increase CPU time by up to 2x without impacting runtime)

Vision: jobs report high-level performance metrics

Spork F— Jobs Stages Storage Environment Executors

Details for Stage 17

Total task time across all tasks: 13 min
Shuffle read: 2.5 GB / 31589120

Performance Information

Bottleneck: Disk (if disk bandwidth were increased by 23% or more, network would become the bottleneck)
Non-bottlenecks: Network (could reduce network bandwidth by up to 30% slower without impacting runtime), CPU (could
increase CPU time by up to 2x without impacting runtime)

Benefit of caching: Storing input in-memory would reduce job completion time by 42%

Vision: jobs report high-level performance metrics
Spqﬁ'g Monotacke Jobs | Stages Storage Environment Executors

Details for Stage 17

Total task time across all tasks: 13 min
Shuffle read: 2.5 GB / 31589120

Performance Information

Bottleneck: Disk (if disk bandwidth were increased by 23% or more, network would become the bottleneck)
Non-bottlenecks: Network (could reduce network bandwidth by up to 30% slower without impacting runtime), CPU (could
increase CPU time by up to 2x without impacting runtime)

Benefit of caching: Storing input in-memory would reduce job completion time by 42%

Job Runtime Predictor: (enter in properties of different cluster to estimate job's runtime)

Number of machines:

CPU cores per machine:
Network bandwidth per machine: Gbps
1/0 bandwidth per machine: MB/s

Calculate new runtime

Predicted new job runtime:

How can we achieve this vision?

Spark overview
Reasoning about Spark’s performance: why it's hara

New architecture: monotasks
Reasoning about monotasks performance: why it's easy

Monotasks in action (results)

Exam
Read remote data
Flter records

Write result to disk

nle Spark Job:

Task 1
Read and filter block 1
write result to disk

Task 2;
Read and filter block 2
write result to disk

Task 3:
Read and filter block 3
write result to disk

Task 4:
Read and filter block 4
write result to disk

Task 5:
Read and filter block 5
write result to disk

Task 6:
Read and filter block 6
write result to disk

Task n;
Read and filter block n
write result to disk

Fixed number

| Task1 Task9 Task 17

of “slots”

Example Spark Job:

Read remote data
Filter records
Write result to disk

Task 2 Task 10
Worker Task3 Task 11 Task 19
. Task4 Task 12
Task5 Task13 Task 18
Task Task 14
Worker 2 aK0 -

Task 7 Task 15
Task 8 Task 16

v

time

Task 1

Task 1
Read block 1, filter, write result to disk

~N

Neworkread (SRR (SRR

codier [(NN R

Disk write |

time >

How can we achieve this vision?

Spark overview
Reasoning about Spark’s performance: why it's hara

New architecture: monotasks
Reasoning about monotasks performance: why it's easy

Monotasks in action (results)

Task
bottlenecked
on network

read

4)
Task 1
| | u Task
Network reac _}-:i\ bottlenecked
| : ' —| ondisk write
ceu iter) | [N (DN OO
Disk write |
< 7 y

Challenge 1: Task pipelines multiple resources,
bottlenecked on different resources at different times

:

O OO O O
Task1 | Task9

i{
|

LI DRI T | EERERNINEEE
4 concurrent tasks QL Task 2 1 Task 10

on Worker 1

5

i
|

L] ET T] LT
Task3 J_ Task 1]

i}
|

L1 DRI | LI O PP B |
UL Task 4 1 Task 12

time >

Challenge 2:

Concurrent tasks may — |

I N | e

contend for
the same resource
(e.g., network)

time

e o

|

LI

Task T T3

sk 9

Vs
—
\
(
&
J

O O OO O RN | O A A

i O [O]

O B I E]

Task 2

\Task 10

L CTT 10

Task 3

AN J
_i_i

T

i O 0 OO

O O] BT

Task 4

Task 12

S
T

Spark Summit 2015:

Blocked time analysis: how quickly
could a job have completed if a resource
were infinitely fast? (upper bound)

Result of ~1 year of adding metrics to Spark!

How much faster
would the job be with
2x disk throughput?

How would runtimes for these /_ﬁ—

) [0 (O [ORTRN W ODW | [R A O

disk writes change?
How would that change timing of

: N
[[| (S

LI T T I I

Task 1 1 Task 9

i
J

1 O 1 T [

IENNINEEN

Task 2

Task 10

A
-f:

[T T T T1T 1]
F7.1D| OO e
Task3 1 Task11l

E

HINIEENE L]

Task 4

Task 12

——

(and contention for) other resources? !

Challenges to reasoning about performance

Tasks bottleneck on different resources at different times
Concurrent tasks on a machine may contend for resources

No model for performance

How can we achieve this vision?

Spark overview
Reasoning about Spark’s performance: why it's haro

New architecture: monotasks
Reasoning about monotasks performance: why it's easy

Monotasks in action (results)

Spark:

Tasks
bottleneck on
different
resources

Concurrent
tasks may
contend

No model for
performance

Monotasks: Each task uses one resource

Example Spark Job:
Read remote data
Filter records
Write result to disk

Network monotasks:
Each read one remote block

CPU monotasks:
Each filter one block,
generate serialized output

Disk monotasks:
L : Fach writes one block to disk

Spark:

Tasks
bottleneck on
different
resources

Fach task uses
one resource

Concurrent
tasks may
contend

No model for
performance

Monotasks:

Dedicated schedulers control contention

Network
scheduler
PL One task per CPU core
O
[T]
Disk One task per disk
scheduler | [T 1 |

2

time

Spark:

Tasks
bottleneck on
different
resources

Concurrent
tasks may
contend

No model for
performance

Monotasks:

Each task uses
one resource

Dedicated
schedulers control
contention

Monotask times can be used to model
performance

|deal CPU time: total CPU monotask time / # CPU cores

< >

Spark:

Tasks
bottleneck on
different
resources

Concurrent
tasks may
contend

No model for
performance

Monotasks:

Each task uses
one resource

Dedicated
schedulers control
contention

Monotask times can be used to model
performance

|deal CPU time:

time / # CPU cores

|deal disk runtime

<
~

I
total CPU monotask EEl]

T 1
Ideal network runtime T

\ 4

Job runtime;
max of ideal
times

Spark: - Monotasks:

Tasks
haEnedan Each task uses
different one resource
resources
Concurrent Dedicated
tasks may schedulers control
contend contention
No model for Monotask times can
performance be used to model

performance

How much faster would the job be with 2x

|deal CPU time:

disk throughput?

total CPU monotask EEl]

time / # CPU cores

|deal disk runtime

Ideal network runtime T

Spark: Monotasks: How much faster would the job be with 2x

Task h disk throughput?

bottleneck on Fach task uses B R

different one resource | .

ecoUrces |deal CPU time: =

total CPU monotask

Concurrent Dedicated time / # CPU cores K]

tasks may schedulers control —, New iob runtime
contend contention deal network runtime - [ERTERIRININ | J

No modelfor ~ Monotask times can i

performance be used to model Ideal disk runtime [_TT] |

performance (2x disk concurrency) |:||:|:| E

i

Spark:

Tasks
bottleneck on
different
resources

Concurrent
tasks may
contend

No model for
performance

How does this decomposition work?

i%

Task 1

Task 9

|
|

Task 2

Task 10

ii

N

[TTT10 I

Task 3 Task

|
11

|
|

Task 4

Task 12

Network monotasks

Compute monotasks:
one task per CPU core

Disk monotasks; one
per disk

Monotasks:

Each task uses
one resource

Dedicated
schedulers control
contention

Monotask times can
be used to model
performance

How does this decomposition work?
Network read—j

(PU| B0 00 O

Disk write| O I
Task 1

Monotasks

T — S| |
monotask monotask

Implementation

API-compatible with Apache Spark

Workloads can be run on monotasks without re-compiling
Monotasks decomposition handled by Spark internals

Monotasks works at the application level
No operating system changes

How can we achieve this vision?

Spark overview
Reasoning about Spark’s performance: why it's hara

New architecture: monotasks
Reasoning about monotasks performance: why it's easy

Monotasks in action (results)

Runtime (s)

Performance on-par with Apache Spark

800
700
600

00

W B~ W
S 9O
o O

200
100

Big data benchmark
(SQL workload)

Query

Job Completion Time (s)

Performance on-par with Apache Spark

1000
900
800
700
600
500

400

Sort
20 machines)

(600 GB,

 Spark ==
Monotasks

300 fEEs
200 [
100

0k

Reduce

Job Completion Time (s)

110

100 |

90
80
70
60
50
40
30
20
10

Block coordinate descent
(Matrix workload used in ML applications)

16 machines

Spark
| Monotasks mmm

Matrix Tree Reduce
Update 1

Matrix
Update 2

Monotasks in action

Modeling performance

Leveraging performance clarity to optimize performance

How much faster would jobs run if each machine
had 2 disks instead of 17

Runtime (s)

900

Original Runtime
Predicted new runtime o

800 [
700 [

600 \;:‘/ :<
500 |
400 [
300 f
200
100 (5

Actual new runtime <

10 values 20 values
‘Workload

50 values

Predictions for different hardware
within 10% of the actual runtime

How much faster would job run if data were de-
serialized and in memory?

Eliminates disk time to read input data

Eliminates CPU time to de-serialize data

How much fas

er would job run if data were de-

serialized and in memory?

Measuring (de) serialization time with Spark

CPU

Disk write

Spark Task

Network [

[]: (de)serialization time

\ (De) serialization pipelined with

other processing for each record

Application-level measurement
incurs high overhead

How much fas

er would job run if data were de-

Ser|

alized and in memory?

Measuring (de) serialization time with Monotasks

Original compute monotask E||m|nat|ng ﬂne—gralned

T 1
Un-rolled monotask

pipelining enables
measurement!

[]: (de)serialization time

How much faster would job run if data were de-

serialized and in memory?

60 o

Eliminate disk monotask time Original Runtime

sol. Predicted new runtime
— Actual new runtime ——

Sotatotototototototototototod
R,
O RGGSISIRICIIIRRE
40 L.......... ORI
R,
R,
30 S
= 0000000888 YT T e
R,
R,

20 s B RRRRLLRLRL

Eliminate CPU monotask time
spent (de)serialiazing

RRRKRLRRLRRRKRKRKK
PRegel0 e t0 2020t 0200 te 2020 %
X XXX RXR XXX KKK
RRRKRLRRLRRRKRKRKK
PRegel0 e t0 2020t 0200 te 2020 %
10 X XXX RXR XXX KKK
RRRKRLRRLRRRKRKRKK

= - - SOLERBLERGBEII . . \ N\ N\ N\ |-

X XXX RXR XXX KKK

9070720%0%%% %620 % % % %%
000507070020 20 20 t0 e 0 0%

oot ottt e tetetete?
- foteietetotetotototototototel
0 % XX XX XX XX XX

Job Completion Time (s)

Leveraging Performance Clarity to Improve
Performance

Schedulers have complete
visibility over resource use

Framework can configure for
best performance

v

Job Completion Time (min.)

Configuring the number of concurrent tasks

80

N
o O

D W A
o o O

[E—
-]

SEXMNX N
L

-

Map time
— e Reduce time mmmmm
Total time ——

Spark1
—

Spark2 Spark4

Spark8
/

Y

Spark with different numbers of

concurrent tasks

Mono

Monotasks better than any
configuration:
per-resource schedulers
automatically schedule with the
ideal concurrency

Future Work

Leveraging performance clarity to improve performance
— Use resource queue lengths to dynamically adjust job

Automatically configuring for multi-tenancy
— Don't need jobs to specify resource requirements
— (an achieve higher utilization: no multi-resource bin packing

POV SR . [P ————— M on Ot 35 kS: Network monotasks

Details for Stage 17
e Each task uses
Performance Information One resource Compute monotaSkS:

Bottleneck: Disk (if disk bandwidth were increased by 23% or more, network would become the bottleneck)

Non-bottlenecks: Network (could reduce network bandwidth by up to 30% slower without impacting runtime O n e ta S k pe r C P U CO re
increase CPU time by up to 2x without impacting runtime) .

Benefit of caching: Storing input in-memory would reduce job completion time by 42% D ed | Ca ted
Job Runtime Predictor: (enter in properties of different cluster to estimate job's runtime)

schedulers control

CPU cores per machine:

contention
Vision: Monotask times can
Spark always reports be used to model Disk monotasks: one

performance per disk

bottleneck information I —
L I |

Interested? Have a job whose performance
you can't figure out? Email me:
keo@cs.berkeley.edu

Challenging with existing
architecture

