
Re-Architecting Apache Spark for
Performance Understandability

Kay Ousterhout
Joint work with Christopher Canel, Max Wolffe,
Sylvia Ratnasamy, Scott Shenker

About Me
PhD candidate at UC Berkeley

Thesis work on performance of large-scale distributed
systems

Apache Spark PMC member

About this talk
Future architecture for systems like Spark

Implementation is API-compatible with Spark

Major change to Spark’s internals (~20K lines of code)

Spark cluster is a black box, runs the job fast

rdd.groupBy(…)…	

Idealistic view: Spark cluster is a black box, runs the job fast

rdd.groupBy(…)…	

Idealistic view: Spark cluster is a black box, runs the job fast

rdd.groupBy(…)…	

rdd.groupBy(…)…
rdd.reduceByKey(…)…	

Configuration:	
spark.serializer	KryoSerializer	
spark.executor.cores	8	

Idealistic view: Spark cluster is a black box, runs the job fast

rdd.groupBy(…)…
rdd.reduceByKey(…)…	

Realistic view: user uses performance characteristics to tune
job, configuration, hardware, etc.

Configuration:	
spark.serializer	KryoSerializer	
spark.executor.cores	8	

rdd.groupBy(…)…
rdd.reduceByKey(…)…	

Realistic view: user uses performance characteristics to tune
job, configuration, hardware, etc.

Configuration:	
spark.serializer	KryoSerializer	
spark.executor.cores	8	

Users need to be able to reason about
performance

Reasoning about Spark Performance

Widely accepted that network and disk I/O are bottlenecks

CPU (not I/O) typically the bottleneck
network optimizations can improve job completion time by at most 2%

Reasoning about Spark Performance

Spark Summit 2015:
CPU (not I/O) often

the bottleneck

Project Tungsten:
initiative to optimize Spark’s CPU use,
driven in part by our measurements

Reasoning about Spark Performance

Spark Summit 2015:
CPU (not I/O) often

the bottleneck

Project Tungsten:
initiative to optimize

Spark’s CPU use

Spark 2.0:
Some evidence that I/O
is again the bottleneck

[HotCloud ’16]

Users need to understand performance to extract the best
runtimes

Reasoning about performance is currently difficult

Software and hardware are constantly evolving,

so performance is always in flux

Vision: jobs report high-level performance metrics

Vision: jobs report high-level performance metrics

Vision: jobs report high-level performance metrics

Vision: jobs report high-level performance metrics

How can we achieve this vision?
Spark overview

Reasoning about Spark’s performance: why it’s hard

New architecture: monotasks

Reasoning about monotasks performance: why it’s easy

Monotasks in action (results)

Example Spark Job:
Read remote data

Filter records
Write result to disk

Task 1:
Read and filter block 1

write result to disk

Task 2:
Read and filter block 2

write result to disk

Task 3:
Read and filter block 3

write result to disk

Task 4:
Read and filter block 4

write result to disk

Task 5:
Read and filter block 5

write result to disk

Task 6:
Read and filter block 6

write result to disk

Task n:
Read and filter block n

write result to disk

…
	

Example Spark Job:
Read remote data

Filter records
Write result to disk

time

Task 1 Task 9
Task 2

Task 3
Task 4

Task 11
Task 10

Task 12

Worker 1

Task 5 Task 13
Task 6

Task 7
Task 8

Task 15
Task 14

Task 16

Worker 2

…
	

Fixed number
of “slots”

Task 17

Task 18

Task 19

Task 1 Task 9
Task 2

Task 3
Task 4

Task 11
Task 10

Task 12

Worker 1

Task 5 Task 13
Task 6

Task 7
Task 8

Task 15
Task 14

Task 16

Worker 2

…

Task 17

Task 18

Task 19 Task 1:
Read block 1, filter, write result to disk

Task 1

time

Network read

CPU (filter)

Disk write

How can we achieve this vision?
Spark overview

Reasoning about Spark’s performance: why it’s hard

New architecture: monotasks

Reasoning about monotasks performance: why it’s easy

Monotasks in action (results)

Task 18

Task 19
Task 1

Network read

CPU (filter)

Disk write

Challenge 1: Task pipelines multiple resources,
bottlenecked on different resources at different times

Task
bottlenecked
on disk write

Task
bottlenecked
on network

read

Task 1

Task 2

Task 9

Task 3

Task 4

Task 11

Task 10

Task 12
time

4 concurrent tasks
on Worker 1

Task 1

Task 2

Task 9

Task 3

Task 4

Task 11

Task 10

Task 12
time

Challenge 2:
Concurrent tasks may

contend for
 the same resource

(e.g., network)

Blocked time analysis: how quickly
could a job have completed if a resource

were infinitely fast? (upper bound)

Spark Summit 2015:

Result of ~1 year of adding metrics to Spark!

Task 1

Task 2

Task 9

Task 3

Task 4

Task 11

Task 10

Task 12

How much faster
would the job be with
2x disk throughput?

How would runtimes for these
disk writes change?

How would that change timing of
(and contention for) other resources?

Challenges to reasoning about performance
Tasks bottleneck on different resources at different times

Concurrent tasks on a machine may contend for resources

No model for performance

How can we achieve this vision?
Spark overview

Reasoning about Spark’s performance: why it’s hard

New architecture: monotasks

Reasoning about monotasks performance: why it’s easy

Monotasks in action (results)

Spark:
Tasks

bottleneck on
different
resources

Concurrent
tasks may
contend

No model for
performance

Spark:
Tasks

bottleneck on
different
resources

Concurrent
tasks may
contend

No model for
performance

Monotasks: Each task uses one resource

Example Spark Job:
Read remote data

Filter records
Write result to disk

Network monotasks:
Each read one remote block

…
	

CPU monotasks:
Each filter one block,

generate serialized output
…
	

Disk monotasks:
Each writes one block to disk

…
	

Spark:
Tasks

bottleneck on
different
resources

Concurrent
tasks may
contend

No model for
performance

Monotasks:
Each task uses
one resource

Dedicated schedulers control contention

…
	

…
	

…
	

Network
scheduler

time

CPU
scheduler

…	

…	

Disk
scheduler …	

One task per CPU core

One task per disk

Spark:
Tasks

bottleneck on
different
resources

Concurrent
tasks may
contend

No model for
performance

Monotasks:
Each task uses
one resource

Monotask times can be used to model
performance

Dedicated
schedulers control

contention

Ideal CPU time: total CPU monotask time / # CPU cores

Spark:
Tasks

bottleneck on
different
resources

Concurrent
tasks may
contend

No model for
performance

Monotasks:
Each task uses
one resource

Monotask times can be used to model
performance

Dedicated
schedulers control

contention

Ideal CPU time:
total CPU monotask
time / # CPU cores

Ideal network runtime

Ideal disk runtime

Job runtime:
max of ideal

times

Spark:
Tasks

bottleneck on
different
resources

Concurrent
tasks may
contend

No model for
performance

Monotasks:
Each task uses
one resource

How much faster would the job be with 2x
disk throughput?

Dedicated
schedulers control

contention

Ideal CPU time:
total CPU monotask
time / # CPU cores

Ideal network runtime

Ideal disk runtime
Monotask times can

be used to model
performance

Spark:
Tasks

bottleneck on
different
resources

Concurrent
tasks may
contend

No model for
performance

Monotasks:
Each task uses
one resource

How much faster would the job be with 2x
disk throughput?

Dedicated
schedulers control

contention

Ideal CPU time:
total CPU monotask
time / # CPU cores

Ideal network runtime

Ideal disk runtime
(2x disk concurrency)

Monotask times can
be used to model

performance

New job runtime

Spark:
Tasks

bottleneck on
different
resources

Concurrent
tasks may
contend

No model for
performance

Monotasks:
Each task uses
one resource

Dedicated
schedulers control

contention

Monotask times can
be used to model

performance

Task 1

Task 2

Task 9

Task 3

Task 4

Task 11

Task 10

Task 12

…	

…	

…	

Compute monotasks:
one task per CPU core

Disk monotasks: one
per disk

Network monotasks

How does this decomposition work?

How does this decomposition work?

Task 1

Network read
CPU

Disk write

Monotasks

Network
monotask

Disk monotask Compute
monotask

 Implementation
API-compatible with Apache Spark

 Workloads can be run on monotasks without re-compiling
 Monotasks decomposition handled by Spark internals

Monotasks works at the application level

 No operating system changes

How can we achieve this vision?
Spark overview

Reasoning about Spark’s performance: why it’s hard

New architecture: monotasks

Reasoning about monotasks performance: why it’s easy

Monotasks in action (results)

Performance on-par with Apache Spark
Big data benchmark

(SQL workload)

�

���

���

���

���

���

���

���

���

�� �� �� �� �� �� �� �� �� �

��
��
��
�
��
�

�����

�����
���������

Performance on-par with Apache Spark

Sort
(600 GB, 20 machines)

Block coordinate descent
(Matrix workload used in ML applications)

16 machines

��
���
���
���
���
���
���
���
���
���
����
����

������
��������

����������� ������
��������

�����

��
��
��
�
��
��
��
��
��
�
��
��
� �����

���������

��
����
����
����
����
����
����
����
����
����
�����

��� ������ �����

��
��
��
�
��
��
��
��
��
�
��
��
�

�����
���������

Monotasks in action

Modeling performance

Leveraging performance clarity to optimize performance

How much faster would jobs run if each machine
had 2 disks instead of 1?

��
����
����
����
����
����
����
����
����
����

��������� ��������� ���������

��
��
��
��
��
�

��������

����������������
���������������������

������������������

Predictions for different hardware
within 10% of the actual runtime

How much faster would job run if data were de-
serialized and in memory?

Eliminates disk time to read input data

Eliminates CPU time to de-serialize data

How much faster would job run if data were de-
serialized and in memory?

Task
18

Spark Task
Network

CPU

Disk write

: (de)serialization time

Measuring (de) serialization time with Spark

(De) serialization pipelined with
other processing for each record

Application-level measurement
incurs high overhead

How much faster would job run if data were de-
serialized and in memory?

: (de)serialization time

Measuring (de) serialization time with Monotasks

Eliminating fine-grained
pipelining enables

measurement!

Original compute monotask

Un-rolled monotask

How much faster would job run if data were de-
serialized and in memory?

��

���

���

���

���

���

���

��
��
��
�
��
��
��
��
��
�
��
��
�

����������������
���������������������
������������������

Eliminate disk monotask time

Eliminate CPU monotask time
spent (de)serialiazing

Re-run model

Sort

Leveraging Performance Clarity to Improve
Performance

Schedulers have complete
visibility over resource use

Framework can configure for
best performance

…
	

…
	

…
	

Network

time

CPU

…	

…	

Disk
…	

Configuring the number of concurrent tasks

		

��
���
���
���
���
���
���
���
���

������ ������ ������ ������ ����

��
��
��
�
��
��
��
��
��
�
��
��
��
�� ��������
�����������
����������

Spark with different numbers of
concurrent tasks

Monotasks better than any
configuration:

per-resource schedulers
automatically schedule with the

ideal concurrency

Future Work
Leveraging performance clarity to improve performance
– Use resource queue lengths to dynamically adjust job

Automatically configuring for multi-tenancy
– Don’t need jobs to specify resource requirements
– Can achieve higher utilization: no multi-resource bin packing

Monotasks:
Each task uses
one resource

Dedicated
schedulers control

contention

Monotask times can
be used to model

performance

…	

…	

…	

Compute monotasks:
one task per CPU core

Disk monotasks: one
per disk

Network monotasks

Vision:
Spark always reports

bottleneck information

Challenging with existing
architecture

Interested? Have a job whose performance
you can’t figure out? Email me:

keo@cs.berkeley.edu

