Monotasks
Architecting for Performance Clarity
in Data Analytics Frameworks

Kay Qusterhout, Christopher Canel,
Sylvia Ratnasamy, Scott Shenker

i e

e
il

How can | make
this faster?

How can | make

this faster?

Should | use a
different cloud
instance type?

”1,‘1‘

Should I trade 2‘
more CPU for less & & & &
1/0 by using ?-*E g

better
compression?

How can | make

this faster?

227?

How can | make

this faster?

227?

-
- % o e
'l

How can | make

this faster? P
w
299 e e

SR

Architect for performance clarity
Make it easy to reason about performance

For data analytics frameworks:
Is it possible to architect for performance clarity?

Does doing so require sacrificing performance?

Key idea: use single-resource monotasks

Reasoning about performance
Today: why it's hard

Monotasks: why it's easy
Does using monotasks hurt performance?

Using monotasks to predict job runtime

Example Spark Job
Word Count:

k. ile(“hdfs://..") \ w ol
spaxi.textriie(Tache /) Split input file into words

.flatM lambda 1: 1. lit(” *“ \ .
actiap(tambda SpLE() and emit count of 1 for each

.map(lambda w: (w, 1)) \
.reduceByKey(lambda a, b: a + b) \

.saveAsTextFile(“hdfs://..")

Example Spark Job
Word Count:

k. ile(“hdfs://..") \ _ a0
spaxi.textriie(Tadhe /) Split input file into words

.flatM lambda 1: 1. lit(” *“ \ .
achiap(fambda SprE() and emit count of 1 for each

.map(lambda w: (w, 1)) \

.reduceByKey (lambda a, b: a + b) \ For each word, combine the
.saveAsTextFile(“hdfs://..") COUFWS,aanSaVEtthOUtpUt

Spark Word Count Job:

spark.textFile(“hdfs://..") .reduceByKey(lambda a, b: a + b)
.flatMap(lambda 1: l.split(“ “)) .saveAsTextFile(“hdfs://..")
.map(lambda w: (w, 1))

Map Stage: Split input file into words Reduce Stage: For each word, combine
and emit count of 1 for each the counts, and save the output

[Worker 1 }Tasks [Worker 1]
: /. :
[Worker n] [Worker n]

Spark Word Count Job:

.reduceByKey(lambda a, b: a + b)
.saveAsTextFile(“hdfs://..")

Reduce Stage: For each word, combine
the counts, and save the output

[Worker 1 J
[Worker n]

Spark Word Count Job:

.reduceByKey(lambda a, b: a + b)
.saveAsTextFile(“hdfs://..")

4 N
Reduce task:

Network - [

ST I 11 [1 [ww J
(aggregate)
\

Disk write | :

Reduce Stage: For each word, combine
the counts, and save the output

~N
J

- Reduce task
Network read :-[*\ J;Tqéodr:ls{
cugie | I NI O
Easisrl:gotwg ik vvriteA,é e | Task only
network using the CPU

Challenge: Tasks pipeline multiple resources,
resource use changes at fine time granularity

:

O OO O O
Task1 | Task5

i{
|

LI DRI T | EERERNINEEE
4 concurrent tasks QL Task 2 1 Task 6

on a worker

il

L] ET T] LT
Task3 | Task7

i}
|

L1 DRI | LI O PP B |
UL Task 4 1 Task 8

time >

brme
VI [| e
o L LT L]
4 Task1 1 Task5

O O O O OB | [R A

COncurrenttaSksmay E Ll D DI | BERERININIRE
contendfor & Task 2 I Taskb

the same resource e (o

(e.g., network)

;I_IIIIIILII LT
i Task3 | Task7

| CIETET B] LI O PP B |
Task 4 1 Task 8

time >

Challenge: Resource use controlled by operating system

4)
Reduce task

Network read [B T Disk write

cuite) [I D | PO By O
[T = = = buffer cache
i Disk write |
Qommmmmmmm e mm T

Alternate

Disk write

(data in buffer cache)

\What's the bottleneck?

. Single task may be
| bottlenecked on
Time t: different =

5 8 1 5 1 A _

Task1 1+ | Taskd ~different resources
tasks may he ~emarinam | mmesmmn| d0 different times
I I I O 1 CIETE

bottleneckedon L___Task L Taské
~ T ! rmm
different resourceS oo oo momm——5: |

O COng e CE|
Task3 34 Task7/

(!) \
IR s 1 0 I e

0 0 M O O | O [DI [
Taskiél 1 Task 8

' I O | e |
I I R |
Task 1 1 Task 5

Hovvmu.chfaster. e e
would my job be with /" 5™™"F "R

2x disk throughput? / e s | Eemme

[T T T T1T 1]
:77DIIIIIL|| NN
Task3 | Task 7)

How would runtimes for these /_ﬁ—

E

disk writes change? | [[|
O 1 PP | LB PP B
How would that change timing of Task 4 1 Task 8

——

(and contention for) other resources? !

Fundamental challenge: tasks have non-
uniform resource use

Concurrent tasks on a machine may contena
Resource use is controlled outside of the framework

No model for performance

Reasoning about performance
Today: why it’'s hard
Monotasks: why it's easy
Does using monotasks hurt performance?

Using monotasks to predict job runtime

Today: tasks use pipelining to parallelize
multiple resources

Proposal: build systems using monotasks
that each consume just one resource

Today:

Tasks have
non-uniform
resource use

Concurrent
tasks may
contend

Resource use
outside of
framework

No model for
performance

Network read —:

Today's task: CPU | I

Disk write| O T
Task 1

Monotasks: Each task uses one resource

Network Compute |
monotask monotask Disk monotask
- > 5] |

Monotasks don't start until all dependencies complete

Today: Monotasks: Dedicated schedulers control contention

Tasks have Monotasks for one of today’s tasks:

il TR Each task uses —

resource use One TESOLTE

Network

Concurrent scheduler
tasks may

contenc CPU scheduler:

Resource use 1 monotask / core
outside of

framework

Disk drive scheduler;

No model for 1 monotask / disk
performance

Today: Monotasks:

Tasks have
non-uniform
resource use

Each task uses
one resource

Concurrent Dedicated
tasks may schedulers control
contend contention

Resource use
outside of
framework

No model for
performance

Per-resource schedulers have
complete control

Disk drive scheduler: =
1 monotask / disk | | | X

All writes flushed to disk

Today:

Tasks have
non-uniform
resource use

Concurrent
tasks may
contend

Resource use
outside of
framework

No model for
performance

Monotasks:

Each task uses
one resource

Dedicated
schedulers control
contention

Per-resource
schedulers have
complete control

Monotask times can be used to model
performance

|deal CPU time: total CPU monotask time / # CPU cores

IIIIA
v

Today:

Tasks have
non-uniform

resource use

Concurrent
tasks may
contend

Resource use
outside of
framework

No model for
performance

Monotasks:

Each task uses
one resource

Dedicated
schedulers control
contention

Per-resource
schedulers have
complete control

Monotask times can be used to model
performance

|deal CPU time:

time / # CPU cores

|deal disk runtime

<
~

I
total CPU monotask EElT]

[T]
T 1
Ideal network runtime T

\ 4

Modeled job
runtime:

max of ideal
times

Today: Monotasks: How much faster would the job be with 2x

Tasks have dlSk thrOughpUt?
oo 505
ESOUICE Use Ideal CPU time: [l

[T 1

Concurrent Dedicated tt(.) al C/P; Crganotask I
tasks may schedulers control ime (TS 1T]

contend contention

Ideal network runtime T

Resource use Per-resource

outside of schedulers have _ . | [T 1 I
framework COmp|6te control |dea| d|Sk runtime I I I I
No model for

performance

Today: Monotasks: How much faster would the job be with 2x

Tasks have dlSk thrOughpUt?
non-uniform Each task uses |
one resource < 1
[ESOUNCE € Ideal CPU time: =
Concurrent Dedicated tt(.) la C/P; Crrllanotask —
tasks may schedulers control ime ores [T 1] Modeled
contend contention : OUEled new
deal network runtime [T { job runtime
Resource use Per-resource :
outside of schedulers have . . [TT1 |
oo o complete control |deal disk runtime T :
2x disk concurrenc |
No model for Monotask times can (/)] i
be used to model 1] :
performance !

performance

Today:

Tasks have
non-uniform
resource use

Concurrent
tasks may
contend

Resource use
outside of
framework

No model for
performance

[[TIC [T LI

1 :II

L]

[l

.

N o
C1C 1 CICIC]C0] [

[1 [
I e
C1C 1 CICIC]Cl

[T T [T | [T ITITI
O 0 [CT 11

O 0 LT T

ﬁl

[s e B
O] C 1 CIC1CT 01 [

[1 [
I o |

Ol C 1 L1010 O O

_/

-

4 multi-resource Monotasks:
tasks run Each task uses
concurrently one resource
Dedicated

How does this decomposition work? ceduiess coniro

Monotasks
scheduled by _
Der-resource

~

schedulers

contention

Per-resource

! schedulers have

complete control

Monotask times can

Y < 3 Y= beusedto model

performance

How does this decomposition work?

.reduceByKey(lambda a, b: a + b).saveAsTextFile(“hdfs://..")

. - | Network monotasks:
Today's reduce task: requestremote data iy o o

Network BT | write output

(U [R EE
o - CPU monotask:
Disk write B
L) deserialize, combine

counts, serialize

APl-compatible with Spark, implemented at application layer

Reasoning about performance

Today: why it’'s hard

Monotasks: why it's easy

Does using monotasks h

Urt performance?

Using monotasks to preo

ictjob runtime

Does using monotasks hurt performance?

3 benchmark workloads:
Big data benchmark (10 queries run with scale factor 5)
Sort (600GB sorted using 20 machines)
Block coordinate descent (ML workload, 16 machines)

For all workloads, runtime comparable to Spark
At most 9% slower, sometimes faster

How much faster would jobs run if...
Fach machine had 2 disks instead of 17

Original Runtime Actual new runtime C—3
Predicted new runtime
700 s _
Sort 600GB of = 0o N
key-value pairs £ N
E 400 \\\\ . 0% éf\/z\?
: = N\ QXXX
on 20 machines = 300 NN\
200 AN
. NN
CPU Bound Somewhat 10 Bound IO Bound

Workload

Predictions within 9% of the actual runtime

How much faster would job runiif...

Ax more machines

Input stored in-memory =z
No disk read g
No CPU time to deserialize &

Flash drives instead of disks
Faster shuffle read/write time

1600

Original runtime (5 machines, HDD, disk input)
Predicted new runtime (20 machines, SSD, mem. input) E=

Actual new runtime (20 machines, SSD, mem. input) E—=—

r | | [-
1000 I e -
) B e e :
600 f o -
400 [e -
] DN DT e
CPU Bound Somewhat 10 Bound IO Bound

Workload
10x improvement predicted

with at most 23% error

Leveraging Performance Clarity to Automatically
Improve Performance

Network Schedulers have
scheduler complete visibility over
s resource use
CPU scheduler: ™ o
1 monotask / core I @

Can configure for

Disk drive scheduler: | | N — | best performance
1 monotask / disk | | | |

Job Completion Time (min.)

Leveraging Performance Clarity to Automatically
Improve Performance

80
70
60
50

40 |-
30 |-
20 L.

> o

10 03004
XXX

0092024

%0% %

L

K

Map time —=
= o Reduce time mmmmm
- R Total time ——

Spark1

Spark?2

Spark4

Spark8

Mono

Monotask schedulers
automatically select
ideal concurrency

By using single-resource monotasks, system can provide
performance clarity without sacrificing performance

Why do we care about performance clarity?

Typical performance eval: | |
group of experts Practical performance: 1 novice

Cm Cm O fo
T T M

Cm Cm Cm ¥
M— N — N e—

Reflecting on Monotasks

Painful to re-arc
Pipelining dee

nitect existing system to use monotasks

ly integrated (>20K lines of code changed)

Implemented at high layer of software stack

\

Should clarity be provided by the operating system?

Goal: provide performance clarity
Only way to improve performance is to know what to speed up

Using single-resource monotasks provides clarity
without sacrificing performance

With monotasks, easier to improve system performance

github.com/NetSys/spark-monotasks

