
Monotasks
Architecting for Performance Clarity
in Data Analytics Frameworks

Kay Ousterhout, Christopher Canel,
Sylvia Ratnasamy, Scott Shenker

How can I make
this faster?

How can I make
this faster?

Should I use a
different cloud
instance type?

Should I trade
more CPU for less

I/O by using
better

compression?

How can I make
this faster?

???

How can I make
this faster?

???

How can I make
this faster?

???

Architect for performance clarity
Make it easy to reason about performance

For data analytics frameworks:

Is it possible to architect for performance clarity?

Does doing so require sacrificing performance?

Reasoning about performance

 Today: why it’s hard

 Monotasks: why it’s easy

Does using monotasks hurt performance?

Using monotasks to predict job runtime

Key idea: use single-resource monotasks

spark.textFile(“hdfs://…”) \

 .flatMap(lambda l: l.split(“ “)) \

 .map(lambda w: (w, 1)) \

 .reduceByKey(lambda a, b: a + b) \

 .saveAsTextFile(“hdfs://…”)

Example Spark Job

Split input file into words
and emit count of 1 for each

Word Count:

Example Spark Job

Split input file into words
and emit count of 1 for each

Word Count:

For each word, combine the
counts, and save the output

spark.textFile(“hdfs://…”) \

 .flatMap(lambda l: l.split(“ “)) \

 .map(lambda w: (w, 1)) \

 .reduceByKey(lambda a, b: a + b) \

 .saveAsTextFile(“hdfs://…”)

spark.textFile(“hdfs://…”)

 .flatMap(lambda l: l.split(“ “))

 .map(lambda w: (w, 1))

Map Stage: Split input file into words
and emit count of 1 for each

Reduce Stage: For each word, combine
the counts, and save the output

Spark Word Count Job:
 .reduceByKey(lambda a, b: a + b)

 .saveAsTextFile(“hdfs://…”)

…
	

Worker 1

Worker n

Tasks

…
	

Worker 1

Worker n

Spark Word Count Job:

Reduce Stage: For each word, combine
the counts, and save the output

 .reduceByKey(lambda a, b: a + b)

 .saveAsTextFile(“hdfs://…”)

…
	

Worker 1

Worker n

Spark Word Count Job:

Reduce Stage: For each word, combine
the counts, and save the output

 .reduceByKey(lambda a, b: a + b)

 .saveAsTextFile(“hdfs://…”)

…
	

Worker 1

Worker n

Reduce task:
Network

CPU
(aggregate)

Disk write

Task 18

Task 19
Reduce task

Network read

CPU (filter)

Disk write

Challenge: Tasks pipeline multiple resources,
resource use changes at fine time granularity

Task only
using disk

Task only
using the
network

Task only
using the CPU

Task 1

Task 2

Task 5

Task 3

Task 4

Task 7

Task 6

Task 8
time

4 concurrent tasks
on a worker

Task 1

Task 2

Task 5

Task 3

Task 4

Task 7

Task 6

Task 8
time

Concurrent tasks may
contend for

 the same resource
(e.g., network)

Task 18

Task 19
Reduce task

Network read

CPU (filter)

Disk write

Challenge: Resource use controlled by operating system

Disk write
controlled by OS

buffer cache

Alternate
Disk write

(data in buffer cache)

What’s the bottleneck?

Task 1

Task 2

Task 5

Task 3

Task 4

Task 7

Task 6

Task 8

Time t: different
tasks may be

bottlenecked on
different resources

Single task may be
bottlenecked on

different resources
at different times

Task 1

Task 2

Task 5

Task 3

Task 4

Task 7

Task 6

Task 8

How much faster
would my job be with
2x disk throughput?

How would runtimes for these
disk writes change?

How would that change timing of
(and contention for) other resources?

Fundamental challenge: tasks have non-
uniform resource use

Concurrent tasks on a machine may contend

Resource use is controlled outside of the framework

No model for performance

Reasoning about performance
 Today: why it’s hard
 Monotasks: why it’s easy

Does using monotasks hurt performance?
Using monotasks to predict job runtime

Today: tasks use pipelining to parallelize
multiple resources

Proposal: build systems using monotasks

that each consume just one resource

Today:
Tasks have

non-uniform
resource use

Concurrent
tasks may
contend

Resource use
outside of
framework

No model for
performance

Monotasks: Each task uses one resource

Today:
Tasks have

non-uniform
resource use

Concurrent
tasks may
contend

Resource use
outside of
framework

No model for
performance

Network
monotask Disk monotask

Compute
monotask

Today’s task:

Monotasks don’t start until all dependencies complete

Task 1

Network read
CPU

Disk write

Monotasks:
Each task uses
one resource

Dedicated schedulers control contention Today:
Tasks have

non-uniform
resource use

Concurrent
tasks may
contend

Resource use
outside of
framework

No model for
performance

Network
scheduler

CPU scheduler:
 1 monotask / core

Disk drive scheduler:
1 monotask / disk

Monotasks for one of today’s tasks:

Monotasks:
Each task uses
one resource

Dedicated
schedulers control

contention

Today:
Tasks have

non-uniform
resource use

Concurrent
tasks may
contend

Resource use
outside of
framework

No model for
performance

Network
scheduler

CPU scheduler:
 1 monotask / core

Per-resource schedulers have
complete control

Disk drive scheduler:
1 monotask / disk

All writes flushed to disk

 writes buffered

Monotasks:
Each task uses
one resource

Monotask times can be used to model
performance

Dedicated
schedulers control

contention

Ideal CPU time: total CPU monotask time / # CPU cores

Per-resource
schedulers have
complete control

Today:
Tasks have

non-uniform
resource use

Concurrent
tasks may
contend

Resource use
outside of
framework

No model for
performance

Monotask times can be used to model
performance

Ideal CPU time:
total CPU monotask
time / # CPU cores

Ideal network runtime

Ideal disk runtime

Modeled job
runtime:

max of ideal
times

Monotasks: Today:
Tasks have

non-uniform
resource use

Concurrent
tasks may
contend

Resource use
outside of
framework

No model for
performance

Each task uses
one resource

Dedicated
schedulers control

contention

Per-resource
schedulers have
complete control

How much faster would the job be with 2x
disk throughput?

Ideal CPU time:
total CPU monotask
time / # CPU cores

Ideal network runtime

Ideal disk runtime

Monotasks: Today:
Tasks have

non-uniform
resource use

Concurrent
tasks may
contend

Resource use
outside of
framework

No model for
performance

Each task uses
one resource

Dedicated
schedulers control

contention

Per-resource
schedulers have
complete control

How much faster would the job be with 2x
disk throughput?

Ideal CPU time:
total CPU monotask
time / # CPU cores

Ideal network runtime

Ideal disk runtime
(2x disk concurrency)

Modeled new
job runtime

Monotasks: Today:
Tasks have

non-uniform
resource use

Concurrent
tasks may
contend

Resource use
outside of
framework

No model for
performance

Each task uses
one resource

Dedicated
schedulers control

contention

Per-resource
schedulers have
complete control

Monotask times can
be used to model

performance

How does this decomposition work?

Today:
Tasks have

non-uniform
resource use

Concurrent
tasks may
contend

Resource use
outside of
framework

No model for
performance

Monotasks:
Each task uses
one resource

Dedicated
schedulers control

contention

Per-resource
schedulers have
complete control

Monotask times can
be used to model

performance

4 multi-resource
tasks run

concurrently

Monotasks
scheduled by
per-resource
schedulers

How does this decomposition work?

Today’s reduce task:
Network

CPU
Disk write

.reduceByKey(lambda a, b: a + b).saveAsTextFile(“hdfs://…”)

…

Network monotasks:
request remote data

CPU monotask:
deserialize, combine

counts, serialize

Disk monotask:
write output

API-compatible with Spark, implemented at application layer

Reasoning about performance
 Today: why it’s hard
 Monotasks: why it’s easy

Does using monotasks hurt performance?
Using monotasks to predict job runtime

Does using monotasks hurt performance?
3 benchmark workloads:

 Big data benchmark (10 queries run with scale factor 5)
 Sort (600GB sorted using 20 machines)
 Block coordinate descent (ML workload, 16 machines)

For all workloads, runtime comparable to Spark

 At most 9% slower, sometimes faster

How much faster would jobs run if…

Predictions within 9% of the actual runtime

Each machine had 2 disks instead of 1?

Sort 600GB of
key-value pairs
on 20 machines

�
���
���
���
���
���
���
���
���
���

��� ����� �������� �� ����� �� �����

��
��
��
�
��
�

��������

�������� �������
��������� ��� �������

������ ��� �������

How much faster would job run if...

4x more machines

Input stored in-memory
No disk read

No CPU time to deserialize

Flash drives instead of disks
Faster shuffle read/write time 10x improvement predicted

with at most 23% error

�
���
���
���
���

����
����
����
����

��� ����� �������� �� ����� �� �����
��
��
��
�
��
�

��������

�������� ������� �� ��������� ���� ���� ������
��������� ��� ������� ��� ��������� ���� ���� ������

������ ��� ������� ��� ��������� ���� ���� ������

Leveraging Performance Clarity to Automatically
Improve Performance

Network
scheduler

CPU scheduler:
 1 monotask / core

Disk drive scheduler:
1 monotask / disk

Schedulers have
complete visibility over

resource use

Can configure for
best performance

Leveraging Performance Clarity to Automatically
Improve Performance

Monotask schedulers
automatically select
ideal concurrency

��
���
���
���
���
���
���
���
���

������ ������ ������ ������ ����

��
��
��
�
��
��
��
��
��
�
��
��
��
�� ��������

�����������
����������

By using single-resource monotasks, system can provide
performance clarity without sacrificing performance

Why do we care about performance clarity?
Typical performance eval:

group of experts Practical performance: 1 novice

Reflecting on Monotasks
Painful to re-architect existing system to use monotasks

 Pipelining deeply integrated (>20K lines of code changed)
 Implemented at high layer of software stack

 Should clarity be provided by the operating system?

github.com/NetSys/spark-monotasks

Goal: provide performance clarity
Only way to improve performance is to know what to speed up

Using single-resource monotasks provides clarity

without sacrificing performance

With monotasks, easier to improve system performance

