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Architect for performance clarity
Make it easy to reason about performance



For data analytics frameworks:
Is it possible to architect for performance clarity?

Does doing so require sacrificing performance?



Key idea: use single-resource monotasks

Reasoning about performance
Today: why it's hard

Monotasks: why it's easy
Does using monotasks hurt performance?

Using monotasks to predict job runtime



Example Spark Job
Word Count:

k. ile(“hdfs://..") \ w ol
spaxi.textriie(Tache /) Split input file into words

.flatM lambda 1: 1. lit(” *“ \ .
actiap(tambda SpLE( ) and emit count of 1 for each

.map(lambda w: (w, 1)) \
.reduceByKey(lambda a, b: a + b) \

.saveAsTextFile(“hdfs://..")
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Spark Word Count Job:

spark.textFile(“hdfs://..") .reduceByKey(lambda a, b: a + b)
.flatMap(lambda 1: l.split(“ “)) .saveAsTextFile(“hdfs://..")
.map(lambda w: (w, 1))

Map Stage: Split input file into words Reduce Stage: For each word, combine
and emit count of 1 for each the counts, and save the output

[ Worker 1 }Tasks [ Worker 1 ]
: /. :
[ Worker n ] [ Worker n ]




Spark Word Count Job:

.reduceByKey(lambda a, b: a + b)
.saveAsTextFile(“hdfs://..")

Reduce Stage: For each word, combine
the counts, and save the output

[ Worker 1 J
[ Worker n ]




Spark Word Count Job:

.reduceByKey(lambda a, b: a + b)
.saveAsTextFile(“hdfs://..")
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Reduce Stage: For each word, combine
the counts, and save the output
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Challenge: Tasks pipeline multiple resources,
resource use changes at fine time granularity
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Challenge: Resource use controlled by operating system

4 )
Reduce task

Network read [ B T Disk write
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Disk write

(data in buffer cache)




\What's the bottleneck?
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Fundamental challenge: tasks have non-
uniform resource use

Concurrent tasks on a machine may contena
Resource use is controlled outside of the framework

No model for performance



Reasoning about performance
Today: why it’'s hard
Monotasks: why it's easy
Does using monotasks hurt performance?

Using monotasks to predict job runtime



Today: tasks use pipelining to parallelize
multiple resources

Proposal: build systems using monotasks
that each consume just one resource






Today:
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tasks may
contend
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Network read —:

Today's task: CPU | I

Disk write| O T
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Monotasks: Each task uses one resource

Network Compute |
monotask monotask Disk monotask
- > 5] |

Monotasks don't start until all dependencies complete



Today: Monotasks: Dedicated schedulers control contention

Tasks have Monotasks for one of today’s tasks:

il TR Each task uses —

resource use One TESOLTE

Network
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outside of
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Disk drive scheduler;

No model for 1 monotask / disk
performance
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All writes flushed to disk



Today:

Tasks have
non-uniform
resource use

Concurrent
tasks may
contend

Resource use
outside of
framework

No model for
performance

Monotasks:

Each task uses
one resource

Dedicated
schedulers control
contention

Per-resource
schedulers have
complete control

Monotask times can be used to model
performance

|deal CPU time: total CPU monotask time / # CPU cores

IIIIA
v




Today:

Tasks have
non-uniform

resource use

Concurrent
tasks may
contend

Resource use
outside of
framework

No model for
performance

Monotasks:

Each task uses
one resource

Dedicated
schedulers control
contention

Per-resource
schedulers have
complete control

Monotask times can be used to model
performance

|deal CPU time:

time / # CPU cores

|deal disk runtime

<
~

I
total CPU monotask EElT]

[ T ]
T 1
Ideal network runtime T

\ 4

Modeled job
runtime:

max of ideal
times



Today: Monotasks:  How much faster would the job be with 2x
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4 multi-resource Monotasks:
tasks run Each task uses
concurrently one resource
Dedicated

How does this decomposition work?  ceduiess coniro
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How does this decomposition work?

.reduceByKey(lambda a, b: a + b).saveAsTextFile(“hdfs://..")

. - | Network monotasks:
Today's reduce task: requestremote data iy o o

Network BT | write output

(U [ R EE
o - CPU monotask:
Disk write B
L ) deserialize, combine

counts, serialize

APl-compatible with Spark, implemented at application layer
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Does using monotasks hurt performance?

3 benchmark workloads:
Big data benchmark (10 queries run with scale factor 5)
Sort (600GB sorted using 20 machines)
Block coordinate descent (ML workload, 16 machines)

For all workloads, runtime comparable to Spark
At most 9% slower, sometimes faster



How much faster would jobs run if...
Fach machine had 2 disks instead of 17

Original Runtime Actual new runtime C—3
Predicted new runtime
700 s _
Sort 600GB of = 0o N
key-value pairs £ N
E 400 \\\\ . 0% éf\/z\?
: = N\ QXXX
on 20 machines = 300 NN\
200 AN
. NN
CPU Bound Somewhat 10 Bound IO Bound

Workload

Predictions within 9% of the actual runtime



How much faster would job runiif...

Ax more machines

Input stored in-memory =z
No disk read g
No CPU time to deserialize &

Flash drives instead of disks
Faster shuffle read/write time

1600

Original runtime (5 machines, HDD, disk input)
Predicted new runtime (20 machines, SSD, mem. input) E=

Actual new runtime (20 machines, SSD, mem. input) E—=—

r | | [ -
1000 I e -
) B e e :
600 f o -
400 [ e -
] DN DT e
CPU Bound Somewhat 10 Bound IO Bound

Workload
10x improvement predicted

with at most 23% error



Leveraging Performance Clarity to Automatically
Improve Performance

Network Schedulers have
scheduler complete visibility over
s resource use
CPU scheduler: ™ o
1 monotask / core I @

Can configure for

Disk drive scheduler: | | N — | best performance
1 monotask / disk | | | |




Job Completion Time (min.)

Leveraging Performance Clarity to Automatically
Improve Performance
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By using single-resource monotasks, system can provide
performance clarity without sacrificing performance

Why do we care about performance clarity?

Typical performance eval: | |
group of experts Practical performance: 1 novice
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Reflecting on Monotasks

Painful to re-arc
Pipelining dee

nitect existing system to use monotasks

ly integrated (>20K lines of code changed)

Implemented at high layer of software stack

\

Should clarity be provided by the operating system?



Goal: provide performance clarity
Only way to improve performance is to know what to speed up

Using single-resource monotasks provides clarity
without sacrificing performance

With monotasks, easier to improve system performance

github.com/NetSys/spark-monotasks



