DRIZZLE:

FAST AND ADAPTABLE STREAM PROCESSING AT SCALE

Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali Ghodsi, Michael Franklin, Benjamin Recht, Ion Stoica

STREAMING WORKLOADS

STREAMING TRENDS: LOW LATENCY

Results power decisions by machines

Credit card fraud J Disable account

Slow video load ↓ Direct user to new CDN

STREAMING REQUIREMENTS: HIGH THROUGHPUT

Disable stolen accounts

Detect suspicious logins

Dynamically adjust application behavior

As many as 10s of millions of updates per second

Need a distributed system

DISTRIBUTED EXECUTION MODELS

EXECUTION MODELS: CONTINUOUS OPERATORS

EXECUTION MODELS: CONTINUOUS OPERATORS

Low latency output **Mutable local** state

EXECUTION MODELS: CONTINUOUS OPERATORS

EXECUTION MODELS: MICRO-BATCH

EXECUTION MODELS: MICRO-BATCH

FAILURE RECOVERY

FAILURE RECOVERY: MICRO-BATCH

Task boundaries capture task interactions!

FAILURE RECOVERY: MICRO-BATCH

Task output is periodically checkpointed

Parallelize replay

EXECUTION MODELS

Continuous operators

Static scheduling Inflexible Slow failover

Micro-batch Scheduling granularity Dynamic scheduling Adaptable Parallel recovery Straggler mitigation

INSIDE THE SCHEDULER

SCHEDULING OVERHEADS

Median-task time breakdown

Cluster: 4 core, r3.xlarge machines

Workload: Sum of 10k numbers per-core

INSIDE THE SCHEDULER

Goal: Remove scheduler involvement for reduce tasks

(1) **Pre-schedule** reduce tasks

Goal: Remove scheduler involvement for reduce tasks

(1) **Pre-schedule** reduce tasks

COORDINATING SHUFFLES: EXISTING SYSTEMS

DRIZZLE

Schedule **group** of micro-batches at once

Fault tolerance, scheduling at group boundaries

MICRO-BENCHMARK: 2-STAGES

100 iterations – Breakdown of pre-scheduling, group-scheduling

EVALUATION: LATENCY

Yahoo! Streaming Benchmark

Input: JSON events of ad-clicks Compute: Number of clicks per campaign Window: Update every 10s

Comparing Spark 2.0, Flink 1.1.1, Drizzle 128 Amazon EC2 r3.xlarge instances

STREAMING BENCHMARK - PERFORMANCE

Yahoo Streaming Benchmark: 20M JSON Ad-events / second, 128 machines Event Latency: Difference between window end, processing end

ADAPTABILITY: FAULT TOLERANCE

Yahoo Streaming Benchmark: 20M JSON Ad-events / second, 128 machines Inject machine failure at 240 seconds

INTRA-BATCH QUERY OPTIMIZATION

Yahoo Streaming Benchmark: 20M JSON Ad-events / second, 128 machines Optimize execution of each micro-batch by pushing down aggregation

End-to-end Latency Fault tolerance Query optimization

Yahoo Streaming Benchmark

Throughput Elasticity Group-size tuning Synthetic micro-benchmarks Video Analytics Shivaram's Thesis: Iterative ML Algorithms

