DRIZZLE:
FAST AND ADAPTABLE STREAM PROCESSING AT SCALE

Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali Ghodsi, Michael Franklin, Benjamin Recht, Ion Stoica
STREAMING WORKLOADS
STREAMING TRENDS: LOW LATENCY

Results power decisions by machines

Credit card fraud
↓ Disable account

Suspicious user logins
↓ Ask security questions

Slow video load
↓ Direct user to new CDN
STREAMING REQUIREMENTS: HIGH THROUGHPUT

Disable stolen accounts

Detect suspicious logins

Dynamically adjust application behavior

As many as 10s of millions of updates per second

Need a distributed system
DISTRIBUTED EXECUTION MODELS
Group by user, run anomaly detection
Group by user, run anomaly detection

Mutable local state

Low latency output
Group by user, run anomaly detection

Execution Models: Continuous Operators

- Systems:
 - Naiad
 - Flink
 - Google MillWheel

- Streaming DBs:
 - Borealis, Flux etc

- Mutable local state

- Low latency output
Group by user, run anomaly detection

Tasks output state on completion

Output at task granularity

EXECUTION MODELS: MICRO-BATCH

Micro-batch
EXECUTION MODELS: MICRO-BATCH

- Group by user, run anomaly detection
- Dynamic task scheduling
 - Adaptability
 - Straggler mitigation
 - Elasticity
 - Fault tolerance
- Output at task granularity
 - Tasks output state on completion
- Tasks output state on completion
FAILURE RECOVERY
FAILURE RECOVERY: CONTINUOUS OPERATORS

Chandy Lamport Async Checkpoint

Checkpointed state
FAILURE RECOVERY: MICRO-BATCH

Task output is periodically checkpointed

Task boundaries capture task interactions!
Failure recovery: Micro-batch

- Task output is periodically checkpointed.
- Parallelize replay.
- Replay tasks from failed machine.
EXECUTION MODELS

Continuous operators
- Static scheduling
- Inflexible
- Slow failover
- **Low latency**

Micro-batch
- **Scheduling granularity**
 - Dynamic scheduling
 - Adaptable
 - Parallel recovery
 - Straggler mitigation
- **Processing granularity**
 - Higher latency
EXECUTION MODELS

Continuous operators
- Static scheduling
- **✓ Low latency**

Drizzle
- **✓ Dynamic scheduling** (coarse granularity)
- **✓ Low latency**
- (fine-grained processing)

Micro-batch
- **✓ Dynamic scheduling** (coarse granularity)
- Higher latency
- (coarse-grained processing)
Inside the scheduler:

1. Decide how to assign tasks to machines
 - data locality
 - fair sharing

2. Serialize and send tasks
Cluster: 4 core, r3.xlarge machines
Workload: Sum of 10k numbers per-core

SCHEDULING OVERHEADS

Median-task time breakdown

- Compute + Data Transfer
- Task Fetch
- Scheduler Delay

Cluster: 4 core, r3.xlarge machines
Workload: Sum of 10k numbers per-core
inside the scheduler

(1) Decide how to assign tasks to machines
 - data locality
 - fair sharing

(2) Serialize and send tasks

Reuse scheduling decisions!
DRIZZLE

Goal:
remove frequent scheduler interaction

(1) Pre-schedule reduce tasks

(2) Group schedule micro-batches
Goal: Remove scheduler involvement for reduce tasks

(1) **Pre-schedule** reduce tasks
Goal: Remove scheduler involvement for reduce tasks

(1) **Pre-schedule** reduce tasks
COORDINATING SHUFFLES: EXISTING SYSTEMS

Metadata describes shuffle data location

Data fetched from remote machines
COORDINATING SHUFFLES: PRE-SCHEDULING

1. Pre-schedule reducers
2. Mappers get metadata
3. Mappers trigger reducers
DRIZZLE

Goal:
wait to return to scheduler

(1) Pre-schedule reduce tasks

(2) Group schedule micro-batches
GROUP SCHEDULING

Group of 2

Schedule group of micro-batches at once

Fault tolerance, scheduling at group boundaries
MICRO-BENCHMARK: 2-STAGES

100 iterations – Breakdown of pre-scheduling, group-scheduling

- **Baseline**
- **Only Pre-Scheduling**
- **Drizzle-10**
- **Drizzle-100**

In the paper: group size auto-tuning
EVALUATION

Continuous operators

Static scheduling

1. Latency?
 - Low latency

Drizzle

- Dynamic scheduling (coarse granularity)
 - Low latency (fine-grained processing)

Micro-batch

- Dynamic scheduling (coarse granularity)

2. Adaptability?
 - (coarse-grained processing)
EVALUATION: LATENCY

Yahoo! Streaming Benchmark

Input: JSON events of ad-clicks
Compute: Number of clicks per campaign
Window: Update every 10s

Comparing Spark 2.0, Flink 1.1.1, Drizzle
128 Amazon EC2 r3.xlarge instances
STREAMING BENCHMARK - PERFORMANCE

Yahoo Streaming Benchmark: 20M JSON Ad-events / second, 128 machines

Event Latency: Difference between window end, processing end

Event Latency (ms)

- Spark
- Drizzle
- Flink
ADAPTABILITY: FAULT TOLERANCE

Yahoo Streaming Benchmark: 20M JSON Ad-events / second, 128 machines
Inject machine failure at 240 seconds
EXECUTION MODELS

Continuous operators

- Static scheduling
- Low latency

Drizzle

- Dynamic scheduling (coarse-granularity)
- Low latency (fine-grained processing)
- Optimization of batches

Micro-batch

- Dynamic scheduling
- Higher latency
- Optimization of batches
Optimize execution of each micro-batch by pushing down aggregation

Yahoo Streaming Benchmark: 20M JSON Ad-events / second, 128 machines

INTRA-BATCH QUERY OPTIMIZATION
EVALUATION

<table>
<thead>
<tr>
<th>End-to-end Latency</th>
<th>Yahoo Streaming Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault tolerance</td>
<td></td>
</tr>
<tr>
<td>Query optimization</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Throughput</th>
<th>Synthetic micro-benchmarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elasticity</td>
<td>Video Analytics</td>
</tr>
<tr>
<td>Group-size tuning</td>
<td>Shivaram’s Thesis: Iterative ML Algorithms</td>
</tr>
</tbody>
</table>
CONCLUSION

Continuous operators

Static scheduling
- Low latency

Drizzle
- Dynamic scheduling (coarse granularity)
- Low latency (fine-grained processing)
- Optimization of batches

Source code: https://github.com/amplab/drizzle-spark

Micro-batch
- Dynamic scheduling (coarse granularity)
- Higher latency (coarse-grained processing)
- Optimization of batches

Shivaram is answering questions on sli.do