
Sparrow
Distributed Low-Latency Spark Scheduling

Kay Ousterhout, Patrick Wendell, Matei Zaharia, Ion Stoica

Outline

The Spark scheduling bottleneck

Sparrow’s fully distributed, fault-tolerant technique

Sparrow’s near-optimal performance

Spark Today

Worker

Worker

Worker

Worker

Worker

Worker

Spark Context

User 1
User 2
User 3

Query Compilation

Storage

Scheduling

Spark Today

Worker

Worker

Worker

Worker

Worker

Worker

Spark Context

User 1
User 2
User 3

Query Compilation

Storage

Scheduling

Job Latencies Rapidly Decreasing

10 min. 10 sec. 100 ms 1 ms

2004: MapReduce
batch job

2009:
Hive query

2010: Dremel
Query

2012: Impala
query 2010:

In-memory
Spark query

2013:
Spark

streaming

Job latencies rapidly decreasing

Job latencies rapidly decreasing
+

Spark deployments growing in size

Scheduling bottleneck!

Spark scheduler throughput:

1500 tasks / second

1 second 100

100 ms 10

10 second 1000

Task Duration
Cluster size

(# 16-core machines)

Optimizing the Spark Scheduler

0.8: Monitoring code moved off critical path

0.8.1: Result deserialization moved off critical path

Future improvements may yield 2-3x higher throughput

Is the scheduler the
bottleneck in my cluster?

tinyurl.com/sparkdemo

Worker

Worker

Worker

Worker

Worker

Worker

Cluster Scheduler

Task launch

Task completion

tinyurl.com/sparkdemo

Worker

Worker

Worker

Worker

Worker

Worker

Cluster Scheduler

Task launch

Task completion

tinyurl.com/sparkdemo

Worker

Worker

Worker

Worker

Worker

Worker

Cluster Scheduler

Task launch

Task completion

Scheduler
delay

tinyurl.com/sparkdemo

Spark Today

Worker

Worker

Worker

Worker

Worker

Worker

Spark Context

User 1
User 2
User 3

Query Compilation

Storage

Scheduling

Future Spark

Worker

Worker

Worker

Worker

Worker

Worker

User 1
User 2
User 3

Scheduler
Query compilation

Scheduler
Query compilation

Scheduler
Query compilation

Benefits:
High throughput
Fault tolerance

Future Spark

Worker

Worker

Worker

Worker

Worker

Worker

User 1
User 2
User 3

Scheduler
Query compilation

Scheduler
Query compilation

Scheduler
Query compilation

Storage:

Tachyon

Scheduling with Sparrow

Worker

Worker

Worker

Worker

Worker
Scheduler

Scheduler

Scheduler

Scheduler Stage

Worker

Stage

Batch Sampling

Worker

Worker

Worker

Worker

Worker
Scheduler

Scheduler

Scheduler

Scheduler

Worker

Place m tasks on the least loaded of 2m workers

4 probes
(d = 2)

Queue length poor predictor of wait time

Worker

Worker

80 ms
155 ms

530 ms

Poor performance on heterogeneous workloads

Stage

Late Binding

Worker

Worker

Worker

Worker

Worker
Scheduler

Scheduler

Scheduler

Scheduler

Worker

Place m tasks on the least loaded of d�m workers

4 probes
(d = 2)

Late Binding

Scheduler

Scheduler

Scheduler

Scheduler

Place m tasks on the least loaded of d�m workers

4 probes
(d = 2)

Worker

Worker

Worker

Worker

Worker

Worker

Stage

Late Binding

Scheduler

Scheduler

Scheduler

Scheduler

Place m tasks on the least loaded of d�m workers

Worker
requests

task
Worker

Worker

Worker

Worker

Worker

Worker

Stage

What about constraints?

Stage

Per-Task Constraints

Scheduler

Scheduler

Scheduler

Scheduler

Worker

Worker

Worker

Worker

Worker

Worker

Probe separately for each task

Technique Recap

Scheduler

Scheduler

Scheduler

Scheduler

Batch sampling
+

Late binding
+

Constraints

Worker

Worker

Worker

Worker

Worker

Worker

How well does Sparrow
perform?

How does Sparrow compare to Spark’s native
scheduler?

!"
!#"""
!$"""
!%"""
!&"""
!'"""
!("""

!"!#"""!$"""!%"""!&"""!'"""!("""

)*
+,
-.
+*
!/
01
*!
21
+3

/4+5!678490-.!21+3

:,485!.490;*!+<=*>7?*8
:,488-@
A>*4?

100 16-core EC2 nodes, 10 tasks/job, 10 schedulers, 80% load

TPC-H Queries: Background

TPC-H: Common benchmark for analytics workloads

Sparrow

Spark

Shark: SQL execution engine

!"
!#""
!$"""
!$#""
!%"""
!%#""
!&"""
!&#""
!'"""

(& (' () ($%

*+
,-
./
,+
!0
12
+!
32
,4

'%$5!32+674 #&8)!32+674 599$!32+674

*:/6.2 ;-:<<.= >6+:?

TPC-H Queries

100 16-core EC2 nodes, 10 schedulers, 80% load

95

75

25

50

Percentiles

5

Within 12% of ideal
Median queuing delay of 9ms

Policy Enforcement

Worker
High Priority

Low Priority Worker
User A (75%)

User B (25%)

Fair Shares
Serve queues using weighted fair

queuing

Priorities
Serve queues based on strict

priorities

Weighted Fair Sharing

!"
!#"
!$""
!$#"
!%""
!%#"
!&""
!&#"
!'""

!" !$" !%" !&" !'" !#"

()
**
+*
,!
-.
/0
/

-+12!3/4

5/26!"
5/26!$

Fault Tolerance

Scheduler 1

Scheduler 2

Spark Client 1 ✗
Spark Client 2

Timeout: 100ms
Failover: 5ms

Re-launch queries: 15ms

!"
!#"""
!$"""
!%"""
!&"""

!" !#" !$" !%" !&" !'" !("
)*+,!-./

!"
!#"""
!$"""
!%"""
!&"""

0
1,
23
!2,
.4
56
.,
!7*
+
,!
-+
./

89*:12,
;492<!=:*,67!#

;492<!=:*,67!$

Making Sparrow feature-complete

Interfacing with UI

Delay scheduling

Speculation

(2) Distributed, fault-
tolerant scheduling

with Sparrow

www.github.com/radlab/sparrow

Scheduler

Scheduler

Scheduler

Scheduler

Worker

Worker

Worker

Worker

Worker

Worker

(1) Diagnosing a
Spark scheduling

bottleneck

