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The Spark scheduling bottleneck 
 
Sparrow’s fully distributed, fault-tolerant technique 
 
Sparrow’s near-optimal performance 
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Job Latencies Rapidly Decreasing 

10 min. 10 sec. 100 ms 1 ms 

2004: MapReduce 
batch job 

2009: 
Hive query 

2010: Dremel 
Query 

2012: Impala 
query 2010: 

In-memory 
Spark query 

2013: 
Spark 

streaming 



Job latencies rapidly decreasing 
 



Job latencies rapidly decreasing 
+ 

Spark deployments growing in size 
 

Scheduling bottleneck! 
 



Spark scheduler throughput: 

1500 tasks / second 

1 second               100 

100 ms     10 

10 second                 1000     

Task Duration 
Cluster size 

(# 16-core machines) 



Optimizing the Spark Scheduler 

 
0.8: Monitoring code moved off critical path 
 
0.8.1: Result deserialization moved off critical path 
 
Future improvements may yield 2-3x higher throughput 
 



Is the scheduler the 
bottleneck in my cluster? 

tinyurl.com/sparkdemo 
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Future Spark 
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Benefits: 
High throughput 
Fault tolerance 
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Stage 

Batch Sampling 
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Place m tasks on the least loaded of 2m workers 

4 probes 
(d = 2) 



Queue length poor predictor of wait time 

Worker 

Worker 

80 ms 
155 ms 

530 ms 

Poor performance on heterogeneous workloads 
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What about constraints? 
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Technique Recap 
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How well does Sparrow 
perform? 



How does Sparrow compare to Spark’s native 
scheduler? 
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100 16-core EC2 nodes, 10 tasks/job, 10 schedulers, 80% load 



TPC-H Queries: Background 

TPC-H: Common benchmark for analytics workloads 

 

Sparrow 

Spark 

Shark: SQL execution engine 
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TPC-H Queries 

100 16-core EC2 nodes, 10 schedulers, 80% load 

95 
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Percentiles 

5 

Within 12% of ideal 
Median queuing delay of 9ms 



Policy Enforcement 

Worker 
High Priority 

Low Priority Worker 
User A (75%) 

User B (25%) 

Fair Shares 
Serve queues using weighted fair 

queuing 

Priorities 
Serve queues based on strict 

priorities 



Weighted Fair Sharing 
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Fault Tolerance 

Scheduler 1 

Scheduler 2 

Spark Client 1 ✗ 
Spark Client 2 

Timeout: 100ms 
Failover: 5ms 

Re-launch queries: 15ms 
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Making Sparrow feature-complete 

Interfacing with UI 
 

Delay scheduling 
 

Speculation 



(2) Distributed, fault-
tolerant scheduling 

with Sparrow  

www.github.com/radlab/sparrow 
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(1) Diagnosing a 
Spark scheduling 

bottleneck  


