
The Case for Tiny Tasks in Compute Clusters

Kay Ousterhout*, Aurojit Panda*, Joshua Rosen*,
Shivaram Venkataraman*, Reynold Xin*,

Sylvia Ratnasamy*, Scott Shenker*+, Ion Stoica*

* UC Berkeley, + ICSI

Setting

…

…

Task Task

Task

Task

Map Reduce/Spark/Dryad

Job

Today’s tasks Tiny Tasks
0
1
2
3

Slo
ts

Time

0
1
2
3

Slo
ts

Time

Use smaller tasks!

Why? How? Where?

Why? How? Where?

0
1
2
3

Slo
ts

Time

Problem: Skew and Stragglers

Contended
machine?

Data skew?

Benefit: Handling of Skew and Stragglers

Today’s tasks Tiny Tasks

As much as 5.2x reduction in job completion time!

0
1
2
3

Slo
ts

Time

0
1
2
3

Slo
ts

Time

0
1
2
3

Slo
ts

Time

Problem: Batch and Interactive Sharing

High priority interactive
job arrives

Low priority batch task

Clusters forced to trade off utilization and responsiveness!

Benefit: Improved Sharing

Today’s tasks Tiny Tasks

High-priority tasks not subject to long wait times!

0
1
2
3

Slo
ts

Time

0
1
2
3

Slo
ts

Time

Benefits: Recap

(1) Straggler
mitigation

(2) Improved
sharing

0
1
2
3

Slo
ts

Time

0
1
2
3

Slo
ts

Time

Mantri (OSDI ‘10)
Scarlett (EuroSys ’11)

SkewTune (SIGMOD ‘12)
Dolly (NSDI ’13)

…

Quincy (SOSP ‘09)
Amoeba (SOCC ’12)

…

0
1
2
3

Slo
ts

Time

0
1
2
3

Slo
ts

Time

Why? How? Where?

Scheduling requirements:

High Throughput

Low Latency

Distributed Scheduling
(e.g., Sparrow Scheduler)

Schedule
task

(millions per second)

(milliseconds)

Use existing thread pool to
launch tasks Launch

task

Schedule
task

Use existing thread pool to
launch tasks

+
Cache task binaries

Task launch = RPC time (<1ms)

Launch
task

Schedule
task

Read input
data

Smallest efficient file
block size:

Distribute Metadata
(à la Flat Datacenter Storage, OSDI ‘12)

Launch
task

Schedule
task

8MB

Execute task
+ read data

for next task

Schedule
task

… …

Tons of tiny transfers!

Framework-Controlled I/O
(enables optimizations, e.g., pipelining)

Read input
data

Launch
task

How low can you go?

Execute task
+ read data

for next task

Schedule
task

100’s of
milliseconds

Read input
data

Launch
task 8MB disk block

Why? How? Where?

Original Job

Map Task 1 …

Map Task 2 …

1

2

3

4

N

…
Map

Tasks

Tiny Tasks Job

Reduce Task 1

…

Reduce
Tasks

K1: �

K1: �

K1: �

K2: �

K2: �

K3: �

K5: �

K5: �
…

K1: � K1: � K1: �

K2: � K2: �

Kn: � Kn: � Kn: �

Original Reduce Phase

Tiny Tasks = ?

Reduce Task 1

K1: �

K1: �

K1: �

K1: �

K1: �

K1: �

K1: �

K1: �

K1: �

K1: �

K1: �

K1: �

K1: �

K1: �

K1: �

K1: �

Splitting Large Tasks

•  Aggregation trees
– Works for functions that are associative and commutative

•  Framework-managed temporary state store

•  Ultimately, need to allow a small number of large tasks

Tiny tasks
mitigate stragglers

+
Improve sharing

Distributed
file

metadata

Launch task
in existing
thread pool

Distributed
scheduling

Pipelined
task

execution

 Questions? Find me or Shivaram:

0
1
2
3

Slo
ts

Time

0
1
2
3

Slo
ts

Time

0
1
2
3

Slo
ts

Time

0
1
2
3

Slo
ts

Time

